stable diffusion(Lora的训练)

这篇具有很好参考价值的文章主要介绍了stable diffusion(Lora的训练)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

以坤坤为例,上网随便找了几个坤坤的人脸图像,作为训练的数据集 

stable diffusion(Lora的训练)

1 训练环境搭建

建议看一遍教程,虽然这个up主好像不是很专业的样子,不过流程差不多是这样的,重点关注一下虚拟环境搭建完之后,在终端选择配置的操作,就是一堆yes no,的选项,跟着视频来就行了。

1.1 git clone 项目

本地找个训练环境存放的文件夹,利用git工具拉取训练webui环境

git clone https://github.com/bmaltais/kohya_ss.git

拉取后会有这样的目录,执行红框内的setup.bat文件就能安装训练的虚拟环境了(和之前搭建的SD框架虚拟环境类似,但是安装的python库版本会有所出入,如果不想有版本冲突的话,建议直接在这里就不需要操作任何配置了)

stable diffusion(Lora的训练)

1.2 cuda加速安装

项目网站上有安装的教程,用于加速训练过程的,支持30和40系显卡

1.3 打开训练的webui

和打开SD webui类似,直接点击这个目录下的gui.bat文件,看到url网址出现就能打开网站了。

stable diffusion(Lora的训练)

2 图片的预处理

 简单来说训练过程中需要图像和对应的图像描述,类似于其他机器学习中的数据和标签。在stable diffusion的webui里可以找到图像预处理模块。输入到lora训练网络中的数据集应该长这样:

结果展示

stable diffusion(Lora的训练)

2.1 裁剪

因为本文一开头搜集到的图像分辨率不一样,训练过程中最好使用同一的分辨率,这里可以通过剪裁网站批量处理人物图像。这里推荐使用512*512的分辨率。这个网站还能同一重命名图片,有强迫症的人很支持。stable diffusion(Lora的训练)

2.2 利用stable diffusion webui预处理

stable diffusion(Lora的训练)在ui的这个界面输入刚刚批量裁剪完的图像,和输出的目录。就能得到以下21张512*512并且带有描述文本的训练集了。

stable diffusion(Lora的训练)

 ……这里坤坤的被预处理自动标记为1girl了,大家可以手动修改一下这个标签,然后检查其他的描述是否存在不合理的情况,酌情删除和增加即可。

3 模型的训练和使用

3.1 文件路径安排

回到lora训练的webui上,在dreambooth LoRA栏目下添加源模型,因为本次训练的是真实人物模型,笔者就选择了这个比较合适的大模型。stable diffusion(Lora的训练)

 子栏目Folders按照这个格式放置刚刚处理的图片,这里的文件命名只需要注意10_cxk,前面的数字,是每次训练过程中网络训练单张图片的次数。其余的路径名大家可以自定义。stable diffusion(Lora的训练)

 子栏目training parameter就是训练过程中需要炼丹的参数,大家根据自己电脑的配置来修改,数据量大的,显存足够的情况下,batchsize可以调高。学习率和epoch次数都是比较常见的修改参数。这里用了8个epoch去训练,每次epoch结束后都会保存当前的Lora模型。结果是这样的:

stable diffusion(Lora的训练)

 大家可以根据训练的loss值来选择计算机认为较好的结果,当然loss越小拟合得越好,太小则会过拟合,泛化性能不足。

3.2 lora模型挑选

刚刚一共训练了八个cxk_lora模型,但看loss值不好挑选最佳的模型,这里回到stable diffusion webui里,利用脚本来观察那个lora模型比较好。

3.2.1 插件安装

stable diffusion(Lora的训练)

需要安装红框里的插件,才能利用脚本一次性使用多个lora进行对比,当然,大家可以不用插件,一个一个去生成,但是就是会比较麻烦,有插件就方便一些。

stable diffusion(Lora的训练)

3.2.2 比较模型 

把刚刚整完的lora模型放到这个插件的model/lora目录下,就能在界面看到这样的效果。记得大模型要选择你训练的时候的基底模型。附加网络随机选取,这个插件不用选择开启。但是网络类型和模型是需要选取的,为的是让后面的脚本能识别你要进行对比的lora模型。

stable diffusion(Lora的训练)

 脚本里这样设置,选择XYZ 绘图脚本stable diffusion(Lora的训练)

X轴类型选择刚刚插件内的额外网络模型(也就是你的Lora模型)

Y轴选择这个模型需要运用的程度,等价于prompt语法中的<lora:cxk_model_xxx:0.5>,因为有些情况下,会出现模型的过拟合,若是应用占比过大,反而效果不好。

出图结果:stable diffusion(Lora的训练)

 可以看到拉,cxk_lora-7这个模型配合上0.9左右的占比,实现的效果比较好。

3.3 lora应用

选择刚刚合适的模型,放入到这个目录下(其实应该可以修改代码,这样就不用复制来复制去了。。还占用空间,不过fine拉,看代码也是个很长的过程)stable diffusion(Lora的训练)

 然后就能在stable diffusion webui里愉快地出图啦~

stable diffusion(Lora的训练)

 这里的插件和脚本都不需要开启了。记得关闭。

相关链接

训练工程——kohya_ss

剪裁工具——photosoft文章来源地址https://www.toymoban.com/news/detail-411446.html

到了这里,关于stable diffusion(Lora的训练)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Stable Diffusion Lora模型训练详细教程

    通过Lora小模型可以控制很多特定场景的内容生成。 但是那些模型是别人训练好的,你肯定很好奇,我也想训练一个自己的专属模型(也叫炼丹~_~)。 甚至可以训练一个专属家庭版的模型(family model),非常有意思。 将自己的训练好的Lora模型放到stableDiffusion lora 目录中,

    2024年02月02日
    浏览(50)
  • LoRa模型训练教程(炼丹,Stable Diffusion)

    何为LoRA?LoRA并不是扩散模型专有的技术,而是从隔壁语言模型(LLM)迁移过来的,旨在解决避免将整个模型参数拷贝下来才能对模型进行调校的问题。因为大型语言模型的参数量过于恐怖,比如最近新出的GPT-4参数量约为100 万亿。 LoRA采用的方式是向原有的模型中插入新的数

    2024年02月10日
    浏览(42)
  • Stable diffusion 训练lora出现报错

    今天使用kohya_ss训练lora时出现三个报错,下面是解决办法。 一: 报错 UnboundLocalError: local variable \\\'pipe\\\' referenced before assignment 这个应该是项目的BUG,现在的版本还没修复,但是可以绕过它。方法如下:去 huggingface 下载预训练的基础模型到本地,复制模型的地址到红色框内并把

    2024年02月13日
    浏览(71)
  • Stable Diffusion 使用lora-scripts WebUI训练LoRA模型

    如果对代码使用有困难的小伙伴可以直接使用WebUI版的LoRA模块进行训练操作。不管是训练人物,场景,风格,还是服装都是一套通用的模式,仅仅是使用不同的数据集得到的结果不同。 使用 git clone --recurse-submodules https://gi

    2024年02月17日
    浏览(51)
  • 【 stable diffusion LORA模型训练最全最详细教程】

    个人网站:https://tianfeng.space/ 其实想写LORA模型训练很久了,一直没时间,总结一下现在主流的两种LORA模型训练方式,分别是朱尼酱的赛博丹炉和秋叶大佬的训练脚本,训练效果应该是赛博丹炉更好,我个人更推荐朱尼酱的赛博丹炉,界面炫酷,操作简单,作者也是花了很多

    2024年02月09日
    浏览(53)
  • 炼丹!训练 stable diffusion 来生成LoRA定制模型

    LoRA,英文全称Low-Rank Adaptation of Large Language Models,直译为大语言模型的低阶适应,这是微软的研究人员为了解决大语言模型微调而开发的一项技术。 比如,GPT-3有1750亿参数,为了让它能干特定领域的活儿,需要做微调,但是如果直接对GPT-3做微调,成本太高太麻烦了。 LoRA的

    2024年03月27日
    浏览(51)
  • AutoDL 训练stable-diffusion lora模型

    1.创建镜像实例 2. 启动实例  3.启动服务 4.配置参数 4.1 基础模型选择   4.2 文件路径设置  5.点击打印训练信息  6.训练模型(点击Train model)    

    2024年02月16日
    浏览(56)
  • Stable Diffusion 指定模型人物,Lora 训练全流程

    在使用 Stable Diffusion 的时候,可以选择别人训练好的 Lora,那么如何训练自己的 Lora,本篇文章介绍了介绍了如何训练Lora,如何从训练的模型中选择好的模型,如何在 Stable Diffusion 中使用。 闲话不多说,直接实际操作吧,干货满满,记得关注哦,以免找不到了。首先我们来获

    2024年02月09日
    浏览(61)
  • 训练自己的个性化Stable diffusion模型,LORA

    需要训练自己的LORA模型 1、有sd-webui有训练插件功能 2、有单独的LORA训练开源web界面 两个开源训练界面 1、秋叶写的SD-Trainer https://github.com/Akegarasu/lora-scripts/  没成功,主要也是cudnn和nvidia-smi中的CUDA版本不一致退出 2、 Kohya\\\'s GUI GitHub - bmaltais/kohya_ss    成功了 遇到问题1, cudn

    2024年02月04日
    浏览(59)
  • 安装stable diffusion 本地lora训练lora script时报错,xformer无法安装

    电脑的python是3.10.8,lora-script中venv-scripts中的python只有3.9.13,安装时一直会如图所示报错 因为是电脑小白,认为可能是venv里的python版本不对,所以想请教一下大佬么们如何才能升级venv里python的版本

    2024年02月12日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包