在GPU云服务器中部署Stable Diffusion web UI

这篇具有很好参考价值的文章主要介绍了在GPU云服务器中部署Stable Diffusion web UI。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 前言

最近在研究如何使用Controlnet细粒度控制Stable Diffusion生成满意的图片,无奈自己本地的显卡只有6G的显存,而Controlnet的Openpose功能需要10G以上的显存才能正常出图。于是只能租用GPU云服务器并将SD模型部署在服务器上,然后再通过本地浏览器访问。

2. 关于云服务器的选择

推荐这篇文章:GPU云服务器平台对比!哪家最值得推荐?
自己使用的是AutoDL,但是并没有使用它家自带的Stable Diffusion模型,还是自己从头开始部署。不太推荐这家,原因是如果使用按量计费,关机后经常会出现无卡可用的情况,尤其是3090这种热门卡。

3. 关于机器的选择

以AutoDL为例,注册完成后来到以下界面选机器:

在GPU云服务器中部署Stable Diffusion web UI
一般来说,现阶段3090从价格、显存大小各个方面综合来看是比较好选择,当然也是经常被一抢而空。

关于计费方式,只推荐按量计费,很多有优惠的平台可以用1~2块/小时租到3090的显卡。除非是需要训练大模型,只是自己用的话不推荐包日/周/月,那价格1年自己都快能买一块了。按量计费的缺点就是关机后可能会因为空闲显卡不足无法正常开机。

在GPU云服务器中部署Stable Diffusion web UI

AutoDL自带了NovelAI,但是实际使用起来可能会有各种错误,其中最多的是Python版本的问题。我这个时间点,它们的机器上自带的都是Python3.8,但是最新版本的stable-diffusion需要3.10的环境,所以不推荐用它自带的,而是选择如下的配置:

在GPU云服务器中部署Stable Diffusion web UI
这里需要提一下,一些出场早一点的显卡可能会不让使用CUDA11.8的环境(如RTX3080),所以这里还是推荐使用3090及以后的显卡。

4. 部署Stable Diffusion

Python和CUDA

一般GPU服务器已经自带Python和显卡驱动,建议使用服务器厂商自带的,否则后续会出现很多问题。

检查pip源

这一步很重要。Stable Diffusion的更新速度很快,但是有一部分厂商的机器所使用的的pip源没有及时更新,没有SD所需要的一些依赖的最新版本,就会导致一直报错。

以autodl为例,我的机器默认使用了华为源,导致自己在后续安装依赖的时候facexlib和numpy一直找不到最新的版本,最后换成阿里源才成功解决,同时换源后记得再更新一下pip的版本。

具体的操作方式见:pip换源 -pip更换国内镜像源

下载Stable Diffusion web UI

在终端中输入以下命令,这里推荐部署在数据盘而不是系统盘,因为后续还需要下载各种模型,占用空间较大。

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

如果连接超时,建议多试几次,因为git的连接有时很不稳定。

尝试运行Stable Diffusion

下载完成后,进入项目根目录,执行命令:

cd stable-diffusion-webui
COMMANDLINE_ARGS="--medvram --always-batch-cond-uncond --port 6006" REQS_FILE="requirements.txt" python launch.py

其中launch.py是执行脚本,medvramalways-batch-cond-uncond都是显存优化的参数;

port 6006指定进程运行在机器的6006端口上。因为autodl自带了一个对外暴露的服务,端口号为6006,所以这样设置。当然,也有其他的方法,会在后面说明;

最后的REQS_FILE是运行所需要的的依赖,命令执行后会自动安装依赖。

使用命令手动下载依赖

如果租用的是国内节点的云服务器,大概率会碰到各种连接失败和超时的问题。比如:

The TLS connection was non-properly terminated

如果出现这种问题推荐手动下载。

基础模型

首先在主目录下创建repositories目录:

mkdir repositories

Stable Diffusion web UI有四个依赖模型,需要分别下载。

StableDiffusion:

git clone https://github.com/CompVis/stable-diffusion.git repositories/stable-diffusion

taming-transformers:

git clone https://github.com/CompVis/taming-transformers.git repositories/taming-transformers

CodeFormer:

git clone https://github.com/sczhou/CodeFormer.git repositories/CodeFormer

BLIP:

git clone https://github.com/salesforce/BLIP.git repositories/BLIP

安装完成后再次执行命令,会自动安装剩下的依赖,当然后续也可能因为连接超时而报错:

COMMANDLINE_ARGS="--medvram --always-batch-cond-uncond --port 6006" REQS_FILE="requirements.txt" python launch.py

python库依赖

在安装依赖的时候也可能会因为网络而卡住,尤其是gfpgan库,这时候建议使用pip install命令手动安装依赖。如果出现类似以下错误:

No matching distribution found for facexlib>=0.2.5

这是因为无法从pip中获取最新版本的库,建议升级一下pip,并且检查一下pip源是否太久没更新。

本机下载依赖并上传到服务器

如果网络实在无法连接,则只能用本机下载模型并上传到服务器上。

在Stable Diffusion的依赖中有一个v1-5-pruned-emaonly.safetensors模型需要从huggingface网站中下载,但是终端的下载速度巨慢。按量计费每分每秒都是money,所以更推荐本地下载后直接上传到服务器。这里以autodl的服务器为例

下载模型

网址:

https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors

上传服务器

常规可以使用Xshell的方式,详情可以参加文档:AutoDL数据上传

我这里介绍通过阿里云盘(因为没有限速)的方式上传到autodl的服务器。

  1. 模型上传至阿里云盘,如果没有账号,需要先注册。
    在GPU云服务器中部署Stable Diffusion web UI

  2. 在控制台界面(开机状态),打开AutoPanel

在GPU云服务器中部署Stable Diffusion web UI

  1. 打开公网网盘,选择阿里云盘,下方会出现一个二维码,需要在手机上下载阿里云盘的app然后扫描并授权。

在GPU云服务器中部署Stable Diffusion web UI

  1. 点击下载,使用服务器从云盘中下载模型:

在GPU云服务器中部署Stable Diffusion web UI

下载后的文件存放在数据盘的根目录中,进入数据存放的文件夹后,将模型移动到项目主目录:

mv v1-5-pruned-emaonly.safetensors stable-diffusion-webui/

后续其他模型都可以用这种方式上传至服务器。

5. 运行

前面所有依赖安装完毕后,在项目主目录下再次执行命令:

COMMANDLINE_ARGS="--medvram --always-batch-cond-uncond --port 6006" REQS_FILE="requirements.txt" python launch.py

如果出现以下输出则表示运行成功:

在GPU云服务器中部署Stable Diffusion web UI

使用autodl的情况下,在控制台中点击自定义服务:

在GPU云服务器中部署Stable Diffusion web UI

后面会出现提示,让进行实名,因为监管进一步收紧,如果不希望实名建议换其他服务器厂商。完成实名后就可以在本地浏览器中操作Stable Diffusion作画了。

在GPU云服务器中部署Stable Diffusion web UI
界面如下:

在GPU云服务器中部署Stable Diffusion web UI

Controlnet使用成功!

在GPU云服务器中部署Stable Diffusion web UI文章来源地址https://www.toymoban.com/news/detail-411747.html

6. 参考

  • https://zhuanlan.zhihu.com/p/386821676
  • https://zhuanlan.zhihu.com/p/574200991

到了这里,关于在GPU云服务器中部署Stable Diffusion web UI的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 云服务器部署stable diffusion webui

    一些过程+亿些踩坑记录 都是因为自己显卡太差,正好还有剩下来的深度学习平台租的服务器,单纯用的话没有必要这么麻烦,但训练对显存有要求而且我也没打算拿着小笔记本电脑跑到天荒地老。 目前时间是2022.11.12,以后和以前的版本可能会不适用。 创建环境(linux) 一

    2024年01月18日
    浏览(39)
  • Stable Diffusion云服务器部署完整版教程

    2023年07月04日 22:30 3607浏览 · 18喜欢 · 22评论 薯片_AI 粉丝: 1513 文章: 1 设置分组 取消关注 已关注         文本旨在将stable diffusion部署在云服务器上,利用云服务器的优势让我们更好的体验AI绘图。 本文的教程是作者一步步实践所总结出来的,完整的按照作者的步骤执

    2024年02月06日
    浏览(42)
  • 在云服务器中部署stable diffusion webui教程。

    要在云服务器中部署Stable Diffusion WebUI,你可以按照以下步骤进行操作: 准备环境: 获取一台云服务器,例如使用云服务提供商(如AWS、Azure、阿里云等)创建一个虚拟机实例。 确保服务器的操作系统满足Stable Diffusion WebUI的要求。通常,Linux发行版如Ubuntu或CentOS是常见选择。

    2024年02月13日
    浏览(52)
  • 在云服务器中部署stable diffusion webui的办法

    这里参考了https://github.com/AUTOMATIC1111/stable-diffusion-webui的官方说明。 这里依旧使用conda虚拟环境:(anaconda 为例) 建立虚拟环境:(这里只需python版本大于3.0) 安装stable diffusion: 安装xformers: 或者: 运行: 使用: 我们使用云服务器,无法使用listen直接用本地连接,需要外

    2023年04月08日
    浏览(56)
  • stable-diffusion-webui服务器centos部署实践(成功)

    之前关注stable-diffusion仅仅是因为stable-diffusion模型,但实践证明,stable-diffusion如果么有那么好的提示词功力,恐怕生成的图就是“畸形的,缺胳膊少腿的,多一块,少一块的”,如V1实践,V2实践,纸糊效果。 如果做不到其他人那样“美女自给自足”,那么我这个“大佬”的

    2024年02月08日
    浏览(49)
  • Stable Diffusion XL webui Linux服务器部署(保姆级教程)

    本人把部署过程遇到的坑,会尽可能详细地写在这篇文章中,以供参考。希望能对大家有所帮助! 4张RTX 4090,NVIDIA驱动版本为525.60.13,CUDA版本为12.0。 我部署的SDXL版本为SDXL-refiner-1.0,虽然SDXL官方github提供了UI界面的脚本,但是用起来不如 AUTOMATIC1111开发的好用,所以还是推

    2024年02月04日
    浏览(43)
  • 手把手教你从0开始在服务器上部署stable diffusion

    验证是否有nvidia驱动 如果没有显示出显卡信息(如下) 则需要参考 ubuntu安装nvidia驱动 https://blog.csdn.net/Perfect886/article/details/119109380 远程连接服务器工具:VS Code https://code.visualstudio.com/Download VS Code 插件:Remote 文件传输工具 FileZilla https://www.filezilla.cn/download 下载地址: https:

    2024年02月06日
    浏览(59)
  • 【AI绘画】云服务器部署stable-diffusion-webui保姆级教程

    之前给大家写过Mac苹果笔记本上部署stable-diffusion-webui的教程,知乎链接: 【奶奶看了也不会】AI绘画 Mac安装stable-diffusion-webui绘制AI妹子保姆级教程 但是安装过程就花了一天的时间,各种问题处理起来真是苦不堪言。。。而且生成图的速度也很慢,一张512 x 512大小的图片就要

    2024年02月09日
    浏览(59)
  • AIGC:腾讯云服务器快速部署stable-diffusion环境,使用ChilloutMix模型进行画图

    前两天在某公众号的软文刷到了AI绘画领域最新的ChilloutMix模型。大概是下面这张图的效果: 激动的心颤抖的手,学了这么多年计算机,就是为了走在时代前沿,事到如今终于可以活学活用了。然而自己的电脑配置完全不够用,咋整?开台GPU云服务器吧。踩了无数坑之后,终

    2024年02月16日
    浏览(46)
  • 云服务器免费领用,体验PAI-EAS 5分钟部署Stable Diffusion webUI

    最近发现大家都在体验AIGC的Stable Diffusion 文生图模型,很多博主也分享了详细的本地部署保姆级教程。 为什么选择本地部署Stable Diffusion 因为没有生成数量的限制,不用花钱,不用被NSFW约束,生成时间快,不用排队,自由度高,插件丰富,功能众多,可以调试和个性化的地方

    2024年02月16日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包