Semantic Kernel 入门系列:?突破提示词的限制

这篇具有很好参考价值的文章主要介绍了Semantic Kernel 入门系列:?突破提示词的限制。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Semantic Kernel 入门系列:?突破提示词的限制

无尽的上下文

LLM对自然语言的理解和掌握在知识内容的解读和总结方面提供了强大的能力。

但是由于训练数据本身来自于公共领域,也就注定了无法在一些小众或者私有的领域能够足够的好的应答。

因此如何给LLM 提供足够多的信息上下文,就是如今的LLM AI应用可以充分发挥能力的地方了。

我们默认可以想到的是在提示词中提供足够的上下文信息,然而像OpenAI的模型总是有一个Max Tokens 的限制,也就意味着不可能一次性将所有的相关信息都可以放在提示词中,即便是最大的gpt-4-32k,目前也只有32,768 tokens,虽然看起来挺多的,但是相比较动则成百上千页的内部文档,或者专业资料,也不大可能将所有的内容都塞进prompt。

Semantic Kernel 入门系列:?突破提示词的限制

即便说不远未来MaxTokens的上限提升到了可以轻轻松松塞下一本书了,还需要考虑的就是成本问题,以目前GPT4 的价格,0.06美元/1K tokens(32K context),光是把Prompt 塞满,不指望做出回复,一次调用成本就 1.97美元了。所以在Prompt中放置大量的信息怎么算都是不划算的。

通常情况下,我们回答一个问题,并不总是需要采用所有的信息的,例如讲某本书的某个知识点,基本不会说要一次性将全书翻一遍,然后才回答问题。除非已经将书中的内容记得滚瓜烂熟了,否则通常都是根据书中关于这个知识点相关的章节或者段落,就可以得到对应的答案了。

这种方法也常常应用于搜索领域,人们所需要的答案往往仅仅在问题所涉及的很小的范围之内。搜索引擎一直在做的事情就是找到最符合你预期的相关结果。对应的结果就是,我们总是能在搜索结果的前两页,甚至前两个条目中获得答案。

所以解决LLM有限Prompt下的上下文的基本方法也是这样,提前根据问题搜索找到相关的内容信息,再将内容信息和问题都是提供给LLM,让LLM做出对应的总结和回答。

找到有用的信息

借助于 Native Function的功能,我们可以通过一些简单的方法,例如关键词等,匹配到一些相关信息,也可以对接搜索引擎(全网的或者私域的),获取一些的相关的讯息。

但是传统的方法还是传统的问题,就比如搜索引擎所采用的索引方法,也都是基于关键词,能匹配上的自然找得到,匹配不上的就很难说了。尤其是有些专用词汇无法描述清楚的时候,还有一些比较多的同义词的时候,都很难得到合适的答案。

这里就需要应用到LLM另外一个神器,Embedding。

简单地说,Embedding可以将文本进行一些转化高维向量,作为向量就有了计算的可能性,就可以的进行相似性和差异性的判断。只需要计算一下两段文本之间的距离,就可以判断是否具有相似性,这种相似性是基于语义的,也就完全突破了字面上的相似性。如此以来,将所有的信息分段或者创建摘要进行转化,将问题和所有信息进行匹配,找到距离最近的或者符合距离需求的,就都是相关的信息了。这样就可以无须关心关键词是否匹配,不用煞费苦心的提取相关关键词了。

不过也有一个问题需要注意的,那就是这种向量的映射方式决定了相关内容查找的准确性是由LLM决定的,也并不是所有的时候都能找到最合适的内容。了解LLM的脾性也是使用它的重要一环。

了解了基本原理之后,后面就可以看看Semantic Kernel在这方面做了什么。


参考资料:文章来源地址https://www.toymoban.com/news/detail-411804.html

  1. https://learn.microsoft.com/en-us/semantic-kernel/concepts-sk/memories
  2. https://platform.openai.com/docs/models/overview
  3. https://openai.com/pricing
  4. https://learn.microsoft.com/en-us/semantic-kernel/concepts-ai/embeddings

到了这里,关于Semantic Kernel 入门系列:?突破提示词的限制的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Semantic Kernel 入门系列:?LLM的魔法

    ChatGPT 只是LLM 的小试牛刀,让人类能够看到的是机器智能对于语言系统的理解和掌握。 如果只是用来闲聊,而且只不过是将OpenAI的接口封装一下,那么市面上所有的ChatGPT的换皮应用都差不多。这就像是买了个徕卡镜头的手机,却只用来扫二维码一样。 由于微软的财大气粗,

    2023年04月09日
    浏览(35)
  • Semantic Kernel 入门系列:? Planner 计划管理

    Semantic Kernel 的一个核心能力就是实现“目标导向”的AI应用。 “目标导向”听起来是一个比较高大的词,但是却是实际生活中我们处理问题的基本方法和原则。 顾名思义,这种方法的核心就是先确定目标,然后再寻找实现目标的方法和步骤。这对于人来说的是很自然的事情

    2023年04月16日
    浏览(39)
  • Semantic Kernel 入门系列:? Planner 规划器

    Semantic Kernel 的一个核心能力就是实现“目标导向”的AI应用。 “目标导向”听起来是一个比较高大的词,但是却是实际生活中我们处理问题的基本方法和原则。 顾名思义,这种方法的核心就是先确定目标,然后再寻找实现目标的方法和步骤。这对于人来说的是很自然的事情

    2023年04月16日
    浏览(35)
  • Semantic Kernel 入门系列:?LLM降临的时代

    不论你是否关心,不可否认,AGI的时代即将到来了。 在这个突如其来的时代中,OpenAI的ChatGPT无疑处于浪潮之巅。而在ChatGPT背后,我们不能忽视的是LLM(Large Language Model)大型语言模型。 一夜之间所有的大厂商都在搞LLM,虽然很难有谁能和OpenAI相匹敌,但是随着AI领域的新摩

    2023年04月08日
    浏览(37)
  • Semantic Kernel 入门系列:?Connector连接器

    当我们使用Native Function的时候,除了处理一些基本的逻辑操作之外,更多的还是需要进行外部数据源和服务的对接,要么是获取相关的数据,要么是保存输出结果。这一过程在Semantic Kernel中可以被归类为Connector。 Connector更像是一种设计模式,并不像Function和Memory 一样有强制和

    2023年04月15日
    浏览(46)
  • LangChain vs Semantic Kernel

    每当向他人介绍 Semantic Kernel, 会得到的第一个问题就是 Semantic Kernel 类似于LangChain吗,或者是c# 版本的LangChain吗? 为了全面而不想重复的回答这个问题,因此我写下这篇文章。 在 ChatGPT 之前,构建 集成AI的应用程序的主要分为两个步骤: 机器学习工程师/数据科学家创建模

    2023年04月20日
    浏览(42)
  • 体验Semantic Kernel图片内容识别

        前几日在浏览devblogs.microsoft.com的时候,看到了一篇名为Image to Text with Semantic Kernel and HuggingFace的文章。这篇文章大致的内容讲的是,使用 Semantic Kernel 结合 HuggingFace 来实现图片内容识别。注意,这里说的是图片内容识别,并非是 OCR ,而是它可以大致的描述图片里的主要

    2024年04月08日
    浏览(53)
  • 使用 Semantic Kernel 实现 Microsoft 365 Copilot 架构

    3月16日,微软发布了微软365 Copilot[1]。 Microsoft 365 Copilot 将您现有的 Word、Excel、PowerPoint、Outlook 和 Teams 与大型语言模型 (LLM) 的强大功能以及来自 Microsoft Graph 和 Microsoft 365 应用的数据相结合,以创建前所未有的体验。正如您在官方视频中看到的那样,Microsoft 365 Copilot的核心

    2024年02月02日
    浏览(39)
  • 优化chatGPT提示词的Prompts

    你扮演一个专业的chatGPT提示词工程师,我将为您提供我的提示词,它用三个反引号分隔,请根据openai发布的提示词标准和优化技巧,改进和优化我的提示词,让chatGPT能够更好的理解。 我的第一个提示词是:“”“…”“”

    2024年02月12日
    浏览(42)
  • 旁门左道:借助 HttpClientHandler 拦截请求,体验 Semantic Kernel 插件

    前天尝试通过 one-api + dashscope(阿里云灵积) + qwen(通义千问) 运行 Semantic Kernel 插件(Plugin) ,结果尝试失败,详见前天的博文。 今天换一种方式尝试,选择了一个旁门左道走走看,看能不能在不使用大模型的情况下让 Semantic Kernel 插件运行起来,这个旁门左道就是从 Stephen T

    2024年02月19日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包