论文推荐:DCSAU-Net,更深更紧凑注意力U-Net

这篇具有很好参考价值的文章主要介绍了论文推荐:DCSAU-Net,更深更紧凑注意力U-Net。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

这是一篇23年发布的新论文,论文提出了一种更深、更紧凑的分裂注意力的U-Net,该网络基于主特征守恒和紧凑分裂注意力模块,有效地利用了底层和高层语义信息。

DCSAU-Net

1、架构

论文推荐:DCSAU-Net,更深更紧凑注意力U-Net

  • DCSAU-Net 的编码器首先使用 PFC 策略从输入图像中提取低级语义信息。
  • CSA 块应用具有不同卷积数和注意机制的多路径特征组。
  • 每个CSA块后面跟着一个步长为 2 的 2×2 最大池化,用于执行下采样操作。
  • 解码器通过采样逐步恢复输入图像的原始大小。
  • skip connections 用于将这些特征图与来自相应编码层的特征图连接起来,混合低级和高级语义信息以生成精确的掩码。
  • 最后 1×1 卷积后接一个 sigmoid 或 softmax 层被用来输出二进制或多类分割掩码。
  • 训练的损失函数为 Dice loss。

2、PFC (Primary Feature Conservation)策略

论文推荐:DCSAU-Net,更深更紧凑注意力U-Net

上图的4个PFC策略介绍

(a) U-Net:使用两个3×3卷积进行底层特征提取。

(b) Stem Block[44]:使用3个3×3卷积获得与7×7卷积相同的接受域,减少参数数量。

© resunet++[27]:使用三个3×3卷积和跳过连接来减轻梯度消失的潜在影响。

(d) 一种新的策略(PFC)。该模块的主要改进采用了深度可分离卷积,如MobileNetV1,由7×7深度卷积和1×1点卷积组成。

3、CSA (Compact Split-Attention) Block

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5n2pGTKS-1681007652112)(null)]

ResNeSt利用大通道分割组进行特征提取。论文采用2组(N=2)来减少参数的数量。这两组都包含一个1×1卷积和一个3×3卷积。

为了改进跨通道的表示,另一组(𝐹2)的输出特征图将第一组(𝐹1)的结果求和,并进行另一个3×3卷积,可以接收来自两个分裂组的语义信息,扩大网络的接受场。F1和F2的和(中间的和)为:

论文推荐:DCSAU-Net,更深更紧凑注意力U-Net

通过global average pooling(GAP)生成的通道统计数据收集全局空间信息:

论文推荐:DCSAU-Net,更深更紧凑注意力U-Net

channel-wise soft attention 用于聚合由基数组表示的加权融合,其中拆分加权组合可以捕获特征图中的关键信息。第𝑐通道的特征图计算为:

论文推荐:DCSAU-Net,更深更紧凑注意力U-Net

这里的𝑎𝑖是一个(软)赋值权重,计算方式如下:

论文推荐:DCSAU-Net,更深更紧凑注意力U-Net

Gci表示全局空间信息𝑆对𝑐 th通道的权重,并使用两次1×1卷积(BatchNorm和ReLU激活)进行量化。最后,完整的CSA块使用标准残差架构(ResNet),输出𝑌使用跳过连接计算:𝑌=𝑉+X。

结果

1、SOTA比较

论文推荐:DCSAU-Net,更深更紧凑注意力U-Net

5个数据集用于训练和评估。Dice Score (DSC)是用来测试的。

论文推荐:DCSAU-Net,更深更紧凑注意力U-Net

在CVC-ClinicDB 表2中,DCSAU-Net的DSC为0.916,mIoU为0.861,优于DoubleU-Net 2.0%, mIoU优于DoubleU-Net 2.5%。还有需要说明的是模型相对于最近的两种基于transformer的架构有了显著的改进,其中mIoU比TransUNet和LeViTUNet分别高6.2%和10.7%。

SegPC-2021 表3中,与其他SOTA模型相比,DCSAU-Net在所有定义的指标中显现了最佳性能。该方法产生的mIoU分数为0.8048,比unet++提高了3.6%,在DSC上比DoubleU-Net提高了2.8%。

2018 data science bowl 表4中,DCSAU-Net的DSC为0.914,比TransUNet高1.9%,mIoU为0.850,比UNet 3+高2.5%。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-l9KUDbG3-1681007652488)(null)]

ISIC-2018 表6中,DCSAU-Net 在指标上比levite提高了2.4%,DSC比UNet 3+增加了1.8%。该模型的recall 为0.922,accuracy 为0.960,优于其他基线方法。特殊说明:高recall更有利于临床应用。

BraTS 2021 表7,DCSAU-Net 的DSC为0.788,mIoU为0.703,分别比ResUnet++高1.7%和2.1%。

2、消融实验

论文推荐:DCSAU-Net,更深更紧凑注意力U-Net

虽然 U-Net 的推理时间比 DCSAU-Net 模型短,但论文的方法在相等的输出特征通道中使用更少参数,更适合部署在内存有限的机器上(也就是时间换空间)

论文推荐:DCSAU-Net,更深更紧凑注意力U-Net

论文研究了不同核大小对深度卷积的影响。7×7获得最佳性能。

3、结果可视化

论文推荐:DCSAU-Net,更深更紧凑注意力U-Net

其他SOTA模型对五种不同医疗分割数据集挑战性图像的定性比较结果。

从定性结果来看,模型生成的分割掩码能够从不完全着色或模糊等低质量图像中捕捉到更合适的前景信息。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-h1UCWrlD-1681007652161)(null)]

上图为在5个医学图像分割数据集上,模型无法从图像中分割出目标的情况。DCSAU-Net也会因为细胞核尺寸小,或者前景与背景相似度高而失败。

下图为5个医学图像分割任务的测试数据集上的前20个epoch的可视化。

论文推荐:DCSAU-Net,更深更紧凑注意力U-Net

可以看到模型收敛速度明显快于其他SOTA方法。

论文地址:https://avoid.overfit.cn/post/80c002a556cf4397aff76edfa62f16d0

本文作者:Sik-Ho Tsang文章来源地址https://www.toymoban.com/news/detail-412128.html

到了这里,关于论文推荐:DCSAU-Net,更深更紧凑注意力U-Net的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习|论文中常用的注意力模块合集(下)

    注意力机制可以增加少量参数的情况下来提升计算精度和模型性能,在论文中常用的注意力模块合集(上)中介绍了三种注意力机制,它们分别是CA、CBAM和SE,均在目标检测和语义分割领域内能够提升模型的性能,废话不多说,直接开始讲解剩下的论文中常用的注意力模型。 1、

    2024年02月03日
    浏览(46)
  • 论文笔记:基于并行注意力 UNet的裂缝检测方法

    论文:基于并行注意力 UNet的裂缝检测方法(Parallel Attention Based UNet for Crack Detection); 发表:2021年发表在《计算机研究与发展》上。 问题:裂缝图像中存在噪声、光线、阴影等因素干扰; 解决方法:比较流行的解决方案是嵌入注意力机制以抑制各种干扰; 缺点:现有的注

    2023年04月23日
    浏览(29)
  • [自注意力神经网络]Segment Anything(SAM)论文阅读

    论文地址 https://arxiv.org/abs/2304.02643 源码地址 https://github.com/facebookresearch/segment-anything 强烈建议大家试试Demo,效果真的很好:https://segment-anything.com/         本文建立了一个基础图像分割模型,并将其在一个巨大的数据集上进行训练,目的是解决一系列下游任务。本文的关键

    2023年04月23日
    浏览(44)
  • U-Net Transformer:用于医学图像分割的自我和交叉注意力模块

    对于复杂和低对比度的解剖结构,医学图像分割仍然特别具有挑战性。本文提出的一种U-Transformer网络,它将Transformer中的self-attention和Cross attention融合进了UNet,这样克服了UNet无法建模长程关系和空间依赖的缺点,从而提升对关键上下文的分割。本文集合了两种注意力机制:自

    2024年02月06日
    浏览(28)
  • YOLO算法改进指南【中阶改进篇】:3.添加SA-Net注意力机制

    论文地址 :SA-Net: Shuffle Attention for Deep Convolutional Neural Networks 开源代码 :https://github.com/wofmanaf/SA-Net 当前的 CNN 中的 attention 机制主要包括:channel attention 和 spatial attention,当前一些方法(GCNet 、CBAM 等)通常将二者集成,容易产生 converging difficulty 和 heavy computation burden 的问题

    2023年04月26日
    浏览(49)
  • YOLO算法改进指南【中阶改进篇】:1.添加SE-Net注意力机制

    SE-Net 是 ImageNet 2017(ImageNet 收官赛)的冠军模型,是由WMW团队发布。具有复杂度低,参数少和计算量小的优点。且SENet 思路很简单,很容易扩展到已有网络结构如 Inception 和 ResNet 中。 已经有很多工作在空间维度上来提升网络的性能,如 Inception 等,而 SENet 将关注点放在了特

    2023年04月24日
    浏览(44)
  • FSOD论文阅读 - 基于卷积和注意力机制的小样本目标检测

    标题:基于卷积和注意力机制的小样本目标检测 作者:郭永红,牛海涛,史超,郭铖 郭永红,牛海涛,史超,郭铖.基于卷积和注意力机制的小样本目标检测 [J/OL].兵工学报. https://link.cnki.net/urlid/11.2176.TJ.20231108.1418.002 典型的FSOD使用Fast R-CNN作为基本的检测框架 本文亮点:引入

    2024年01月24日
    浏览(36)
  • 【论文速递】WACV2023 - 循环相似注意力的小样本医学图像分割

    【论文原文】 :Few-shot Medical Image Segmentation with Cycle-resemblance Attention 博主: 小样本学习,语义分割,自监督,原型 推荐相关论文: 近年来,由于医学影像应用需求的不断提高以及对医学图像标注的专业要求,小样本学习在医学图像语义分割领域越来越受到重视。为了

    2024年02月05日
    浏览(31)
  • 增强YOLO性能的绝妙技巧:GAM-Net注意力机制一键提升准确度!

    卷积神经网络(CNNs)在计算机视觉领域的许多任务和应用中得到了广泛的应用。研究人员发现,CNN在提取深层视觉表征方面表现良好。随着CNNs相关技术的改进,ImageNet数据集上的图像分类,在过去九年中,准确率从63%提高到90%。这一成就还归功于ImageNet数据集的复杂性,这为相

    2024年02月10日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包