【计算机网络-传输层】TCP 协议

这篇具有很好参考价值的文章主要介绍了【计算机网络-传输层】TCP 协议。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 传输层概述

1.1 传输层的功能

  • 端到端通信:提供应用进程间的端到端通信(逻辑通信)。因此传输层又称为端到端协议。
  • 差错检测:对首部和数据部分进行检测。
  • 两种协议:面向连接的 TCP、无连接的 UDP。
  • 复用和分用

【计算机网络-传输层】TCP 协议

概念 解释
传输层 TCP 复用 发送方的部分应用进程的报文在传输层使用 TCP 协议进行封装
传输层 UDP 复用 发送方的部分应用进程的报文在传输层使用 UDP 协议进行封装
网际层 IP 复用 发送方不同协议的数据都可以封装成 IP 数据报(IP 协议字段,TCP 为 6,UDP 为 17)
网际层 IP 分用 接收方的网际层在去除首部后把数据交付给上层相应的协议(TCP 或 UDP)
传输层 TCP 分用 接收方的传输层使用 TCP 协议去除首部后把数据交付给目的应用进程
传输层 UDP 分用 接收方的传输层使用 UDP 协议去除首部后把数据交付给目的应用进程

1.2 端口号

  • 端口:应用进程通过端口号进行标识。端口号长度为 16b,能表示 65535 个不同的端口号。
端口号 类型 解释
0 ~ 1023 熟知端口号(服务端用 由 IANA 分配给 TCP/IP 体系结构应用层中最重要的一些应用协议
1024 ~ 49151 登记端口号(服务端用 为没有熟知端口号的应用程序使用。要使用这类端口号,必须在 IANA 进行登记,以防止重复
49152 ~ 65535 短暂端口号(客户端用 仅在客户端使用,由客户进程在运行时动态选择,通信结束后会被系统收回,以便给其他客户进程使用
  • 需记忆的熟知端口号:
FTP SMTP DNS DHCP HTTP BGP HTTPS RIP
21/20 25 53 67/68 80 179 443 520

【注】OSPF 不使用传输层协议,所以没有对应的端口号。但 OSPF 的 IP 协议字段值为 89。

2 TCP 报文段

2.1 TCP 报文段首部格式

【计算机网络-传输层】TCP 协议

  • 源端口和目的端口:各占 2b,端口是传输层与应用层的服务接口。
  • 序号(seq):占 32b,取值范围 0 ~ 232-1。用来指出本 TCP 报文段的第一个字节的序号。
  • 确认号(ack):占 32b,取值范围 0 ~ 232-1。用来指出期望收到对方下一个 TCP 报文段的第一个字节的序号,同时也是对之前收到的所有数据的确认。若确认号为 N,则表明序号 N-1 为止的所有数据都已收到。
  • 数据偏移(首部长度):占 4b,表示 TCP 首部长度。该字段的取值以 4B 为单位,最大字段值为 15,因此 TCP 首部最大长度为 60B。
  • 保留:占 6b,保留为今后使用,但目前应置位 0。
  • 紧急位(URG):当 URG=1 时,此报文段有紧急数据,应尽快传送。
  • 确认位(ACK):当 ACK=1 时,确认号字段才有效。TCP 连接建立后,ACK 必须为 1。
  • 推送位(PSH):当 PSH=1 时,就尽快地交付给应用进程,而不再等到接收到足够多的数据才向上交付。
  • 复位位(RST):当 RST=1 时,表明TCP连接中出现严重差错,必须释放连接,然后再重新建立连接。
  • 同步位(SYN):当 SYN=1 且 ACK=0 时,表明这是一个 TCP 连接请求报文段。对方若同意建立连接,则应在响应的 TCP 报文段的首部中使 SYN=1 且 ACK=1。
  • 终止位(FIN):当 FIN=1 时,表明此 TCP 报文段的发送方已经将全部数据发送完毕,现在要求释放 TCP 连接。
  • 窗口:占 16b,指出发送本报文段的一方的接收窗口的大小,即接收缓存的可用空间大小,用来表征接收方的接收能力。该字段的取值以 1B 为单位。
  • 校验和:占 16b,用来检查整个 TCP 报文段在传输过程中是否出现了误码。
  • 紧急指针:占 16b,用来指明紧急数据的长度。该字段的取值以 1B 为单位。
  • 选项:长度可变,有多种选项。其中有个选项为最大报文段长度(Maximum Segment Size,MSS),表示报文段中数据部分的最大长度。
  • 填充:为了使整个首部长度是 4B 的整数倍。

【注】重点关注 seq、ack、ACK、SYN、FIN 这几个位。

2.2 TCP 数据传送的过程

假设有客户机 A 和服务器 B 已经建立了 TCP 连接。

(1)现 A 向 B 发送 TCP 确认报文段

首部 数据部分
seq=201, ack=800, ACK=1 100B(seq=201~300)
  • seq=201:指 A 的数据部分是从序号 201 开始的,数据部分总长 100B,因此数据部分的最后一个序号是 300。
  • ack=800:指 A 期望 B 发来的下一个报文段的数据部分序号是从 800 开始的。
  • ACK=1:连接建立后所有传送的报文段都必须置 1。

(2)然后 B 向 A 发送 TCP 确认报文段

首部 数据部分
seq=800, ack=301, ACK=1 200B(seq=800~999)
  • seq=800:指 B 的数据部分是从序号 800 开始的,数据部分总长 200B,因此数据部分的最后一个序号是 999。
  • ack=301:指 B 期望 A 发来的下一个报文段的数据部分序号是从 301 开始的,同时确认 A 的报文段(seq=201~300)已收到。
  • ACK=1:连接建立后所有传送的报文段都必须置 1。

(3)若 A 向 B 发送 3 个 TCP 确认报文段,其中第 2 个报文段丢失:

首部 数据部分
seq=201, ack=x, ACK=1 100B(seq=201~300)
seq=301, ack=x, ACK=1 100B(seq=301~400)(丢失
seq=401, ack=x, ACK=1 100B(seq=401~500)

则 B 仅正确接收第 1 个和第 3 个报文段。此时 B 向 A 发送的 TCP 报文段,应对已正确接收且按序到达的最后一个 TCP 报文段确认,这就是累积确认(更详细的解释见第 4 节内容):

首部 数据部分
seq=x, ack=301, ACK=1 200B(seq=x~x+199)

3 TCP 连接管理

TCP 连接有三个阶段:连接建立、数据传送(上面已述)、连接释放。

3.1 TCP 连接的建立——三次握手

假设有客户机 A 和服务器 B 准备建立 TCP 连接。

【计算机网络-传输层】TCP 协议

服务器 B 进程处于 LISTEN(监听)状态,等待客户机 A 的连接请求。

3.1.1 客户机向服务器发送 TCP 连接请求报文段

客户机 A 向服务器 B 发送 TCP 连接请求报文段

首部 数据部分
seq=x, ack=0, SYN=1, ACK=0 SYN 报文段不能携带数据
  • seq=x:随机选取一个初始序号 x,作为客户机 A 的 TCP 报文段数据部分的初始序号。
  • ack=0:由于 ACK=0,所以 ack 字段无效。
  • SYN=1TCP 连接请求报文段中的同步标志位 SYN 的值必须设置为 1。
  • ACK=0:当 SYN=1,ACK=0 时,表明这是一个 TCP 连接请求报文段

此时,客户机 A 进入 SYN-SENT(同步已发送)状态

【注】TCP 规定同步标志位 SYN 被设置为 1 的报文段(例如 TCP 连接请求报文段和 TCP 连接请求确认报文段)不能携带数据,但要消耗掉一个序号

3.1.2 服务器向客户机发送 TCP 连接请求确认报文段

服务器 B 收到 TCP 连接请求报文段后,向客户机 A 发送 TCP 连接请求确认报文段

首部 数据部分
seq=y, ack=x+1, SYN=1, ACK=1 SYN 报文段不能携带数据
  • seq=y:随机选取一个初始序号 y,作为服务器 B 的 TCP 报文段数据部分的初始序号。
  • ack=x+1:服务器 B 期望收到客户机 A 发来的下一个报文段的数据部分序号是从 x+1 开始的,同时确认客户机 A 的报文段(seq=x)已收到。
  • SYN=1TCP 连接请求确认报文段中的同步标志位 SYN 的值必须设置为 1。
  • ACK=1:当 SYN=1,ACK=1 时,表明这是一个 TCP 连接请求确认报文段

此时,服务器 B 进入 SYN-RCVD(同步已接收)状态

3.1.3 客户机向服务器发送 TCP 确认报文段

客户机 A 收到 TCP 连接请求确认报文段后,向服务器 B 发送 TCP 确认报文段

首部 数据部分
seq=x+1, ack=y+1, SYN=0, ACK=1 TCP 确认报文段可以携带数据
  • seq=x+1:客户机 A 的 TCP 报文段数据部分的序号为 x+1。
  • ack=y+1:客户机 A 期望收到服务器 B 发来的下一个报文段的数据部分序号是从 y+1 开始的,同时确认服务器 B 的报文段(seq=y)已收到。
  • SYN=0TCP 确认报文段中的同步标志位 SYN 的值必须设置为 0。
  • ACK=1:当 SYN=0,ACK=1 时,表明这是一个普通的 TCP 确认报文段

此时,客户机 A 进入 ESTABLISHED(连接已建立)状态

【注】TCP 规定普通的 TCP 确认报文段可以携带数据,但如果不携带数据,则不消耗序号。如果该报文段不携带数据,则客户机 A 要发送的下一个数据报文段的序号仍为 x+1。

服务器 B 收到 TCP 确认报文段后,也进入 ESTABLISHED(连接已建立)状态。至此 TCP 连接已建立。

【总结】TCP 建立连接的过程:

客户机:“我有话要跟你讲,不知可不可以?”
服务器:“可以,你讲吧!”
客户机:“好的!blablabla”

3.2 TCP 连接的释放——四次挥手

假设有客户机 A 和服务器 B 准备释放 TCP 连接。

【计算机网络-传输层】TCP 协议

客户机 A 进程和服务器 B 进程处于 ESTABLISHED(连接已建立)状态

3.2.1 客户机向服务器发送 TCP 连接释放报文段

客户机 A 向服务器 B 发送 TCP 连接释放报文段

首部 数据部分
seq=u, ack=v, FIN=1, ACK=1 FIN 报文段可携带也可不携带数据
  • seq=u:客户机 A 的 TCP 报文段数据部分的序号为 u,它等于客户机 A 之前已传送数据部分的最后一个字节的序号加 1。
  • ack=v:ack 字段的值为 v,它等于客户机 A 之前已收到数据的最后一个字节的序号加 1。
  • FIN=1TCP 连接释放报文段中的同步标志位 SYN 的值必须设置为 1。
  • ACK=1:当 FIN=1,ACK=1 时,表明这是一个 TCP 连接释放报文段

【注】TCP 规定,终止标志位 FIN 等于 1 的 TCP 报文段即使不携带数据,也要消耗掉一个序号。

此时,客户机 A 进入 FIN-WAIT-1(终止等待 1)状态

3.2.2 服务器向客户机发送 TCP 确认报文段

服务器 B 收到 TCP 连接释放报文段后,向客户机 A 发送 TCP 确认报文段

首部 数据部分
seq=v, ack=u+1, FIN=0, ACK=1 TCP 确认报文段可以携带数据
  • seq=v:服务器 B 的 TCP 报文段数据部分的序号为 v。
  • ack=u+1:服务器 B 期望收到客户机 A 发来的下一个报文段的数据部分序号是从 u+1 开始的,同时确认客户机 A 的连接释放报文段(seq=u)已收到。
  • FIN=0TCP 确认报文段中的同步标志位 SYN 的值必须设置为 0。
  • ACK=1:当 FIN=0,ACK=1 时,表明这是一个普通的 TCP 确认报文段

此时,服务器 B 进入 CLOSE-WAIT(关闭等待)状态。客户机 A 已经没有数据要发送了。但服务器 B 如果还有数据要发送,客户机 A 仍要接收,即从服务器 B 到客户机 A 这个方向的连接并未关闭,这称为半关闭状态,该状态可能会持续一段时间。

3.2.3 服务器向客户机发送 TCP 连接释放报文段

服务器 B 向客户机 A 发送若干个 TCP 确认报文段,直到发送最后一次报文段,即 TCP 连接释放报文段

首部 数据部分
seq=w, ack=u+1, FIN=1, ACK=1 FIN 报文段可携带也可不携带数据
  • seq=w:经过发送若干个 TCP 确认报文段,服务器 B 的 TCP 报文段数据部分的序号变为 w。
  • ack=u+1:服务器 B 期望收到客户机 A 发来的下一个报文段的数据部分序号是从 u+1 开始的,同时重复确认客户机 A 的连接释放报文段(seq=u)已收到。
  • FIN=1TCP 连接释放报文段中的同步标志位 SYN 的值必须设置为 1。
  • ACK=1:当 FIN=1,ACK=1 时,表明这是一个 TCP 连接释放报文段

此时,服务器 B 进入 LAST-ACK(最后确认)状态

3.2.4 客户机向服务器发送 TCP 确认报文段

客户机 A 收到 TCP 连接释放报文段后,向服务器 B 发送 TCP 确认报文段

首部 数据部分
seq=u+1, ack=w+1, FIN=0, ACK=1 TCP 确认报文段可以携带数据
  • seq=u+1:客户机 A 的 TCP 报文段数据部分的序号为 u+1。
  • ack=w+1:客户机 A 期望收到服务器 B 发来的下一个报文段的数据部分序号是从 w+1 开始的,同时确认服务器 B 的连接释放报文段(seq=w)已收到。
  • FIN=0TCP 确认报文段中的同步标志位 SYN 的值必须设置为 0。
  • ACK=1:当 FIN=0,ACK=1 时,表明这是一个普通的 TCP 确认报文段

此时,客户机 A 进入 TIME-WAIT(时间等待)状态,服务器 B 收到 TCP 确认报文段后进入CLOSED(连接关闭)状态。但是 TCP 连接仍未释放,必须经过 2MSL(最长报文段寿命,Maximum Segment Lifetime)的时间后,客户机 A 才能进入 CLOSED(连接关闭)状态

【总结】TCP 释放连接的过程:

客户机:“我准备走了。”
服务器:“等一下,我还有一些话没说完。blablabla”
服务器:“blablabla”
服务器:“blablabla,我说完了,你可以走了。”
客户机:“好的!那我走了!”

4 TCP 流量控制和可靠传输

TCP 协议提供一种基于滑动窗口协议的流量控制机制。TCP 使用了校验、序号、确认和重传等机制来达到可靠传输的目的,在下面的过程中将体现这一特点。

假设有发送方 A 和接收方 B 已建立 TCP 连接,不考虑 TCP 的拥塞控制。再假定 A 只给 B 发送数据,B 对 A 进行流量控制。

在 A 和 B 建立 TCP 连接后,B 告诉 A:“我的接收窗口 rwnd=500”,因此 A 将自己的发送窗口 swnd 也设置为 500。窗口大小是以最大报文段 MSS 为单位的,一般将 MSS 设置为 1B,所以 “swnd=500”意思是发送窗口的大小为 500B。

A 的发送缓冲区情况如下:

数据 1~100B 101~200B 201~300B 301~400B 401~500B 501~600B 601~700B 701~800B
swnd
A 已发送
B 已确认
B 已收到

A 发送数据:seq=1,seq=101,seq=201,seq=301,发送缓冲区情况如下:

数据 1~100B 101~200B 201~300B 301~400B 401~500B 501~600B 601~700B 701~800B
swnd
A 已发送
B 已确认
B 已收到

4.1 接收方对发送方的第 1 次流量控制

但是很不巧,seq=201 丢失了,B 只收到 seq=1,seq=101,seq=301。其中 seq=301 是失序报文段,但 B 不会丢弃它。TCP 作如下规定:每接收到一个失序报文段,就要发送一次冗余 ACK,指明下一个期待的报文数据序号。

很明显,现在 B 期望收到 seq=201 的报文,因此 seq=301 是不会被确认的,这被称为累积确认。现在 B 的接收窗口已经接受了 200B 的数据,还有 300B 未接收,于是发送 ACK=1,ack=201,rwnd=300 的冗余报文给 A。

此时发送方 A 的 swnd 调整为 300,swnd 滑动到首个未确认的数据位置。发送缓冲区情况如下:

数据 1~100B 101~200B 201~300B 301~400B 401~500B 501~600B 601~700B 701~800B
swnd
A 已发送
B 已确认
B 已收到

发送方 A 继续发送 seq=401,对于接收方 B 来说,seq=401 依然是失序报文段,继续发送 ACK=1,ack=201,rwnd=300 的冗余报文给 A。此时发送缓冲区情况如下:

数据 1~100B 101~200B 201~300B 301~400B 401~500B 501~600B 601~700B 701~800B
swnd
A 已发送
B 已确认
B 已收到

4.2 接收方对发送方的第 2 次流量控制

发送方 A 也没有对 seq=201 坐视不理,实质上从发出 seq=201 开始,重传计时器也开始计数了,A 发现计时器超时但仍未收到来自 B 的确认,于是进行超时重传

【注】其实,当发送方 A 连续收到三个冗余 ACK 后,就可以立即重新发送 seq=201,而不必等待计时器超时,这被称为快重传算法,在下一节“拥塞控制”将提到。

接收方 B 收到 seq=201 后,由于网络流量原因,接收窗口需减小到 100B,于是返回 ACK=1,ack=501,rwnd=100 的报文。此时发送缓冲区情况如下:

数据 1~100B 101~200B 201~300B 301~400B 401~500B 501~600B 601~700B 701~800B
swnd
A 已发送
B 已确认
B 已收到

发送方 A 发送 seq=501,此时发送缓冲区情况如下:

数据 1~100B 101~200B 201~300B 301~400B 401~500B 501~600B 601~700B 701~800B
swnd
A 已发送
B 已确认
B 已收到

4.3 接收方对发送方的第 3 次流量控制

接收方 B 收到 seq=501 后,返回 ACK=1,ack=601,rwnd=0 的报文,表示 B 不再接收任何数据。此时发送缓冲区情况如下:

数据 1~100B 101~200B 201~300B 301~400B 401~500B 501~600B 601~700B 701~800B
swnd
A 已发送
B 已确认
B 已收到

由于发送方 A 的 swnd=0,因此 A 不能发送任何数据了。接收方 B 必须发送一个非零窗口通知,以告知发送方 A:“你可以开始发送大小为 xxx 的窗口了。”所以,A 一直在等待这个通知,只要收到通知,将恢复传输过程。

然而可能会出现这样一种情况:B 发出的通知丢失,A 只能无限等待下去。为了打破由于非零窗口通知报文段丢失而引起的双方互相等待的死锁局面,TCP 为每一个连接都设有一个持续计时器

  • 只要 TCP 连接的一方收到对方的零窗口通知,就启动持续计时器。
  • 当持续计时器超时时,就发送一个零窗口探测报文段,仅携带 1 字节的数据。
  • 对方在确认这个零窗口探测报文段时,给出自己现在的接收窗口值 rwnd。
    • 如果接收窗口值 rwnd 仍然是 0,那么收到这个报文段的一方就重新启动持续计时器,继续以上过程。
    • 如果接收窗口值 rwnd 不是 0,那么死锁的局面就可以被打破了。

【注】TCP 规定:即使接收窗口值为 0,也必须接受零窗口探测报文段、确认报文段以及携带有紧急数据的报文段。

5 TCP 拥塞控制

5.1 慢开始和拥塞避免

设置一个慢开始门限阈值 ssthresh,初始值为 16。根据发送方的拥塞窗口 cwnd 的大小执行不同的算法:

  • 当 cwnd < ssthresh 时,使用慢开始算法;
  • 当 cwnd > ssthresh 时,使用拥塞避免算法;
  • 当 cwnd = ssthresh 时,使用拥塞避免算法。

慢开始算法:从 cwnd=1 开始,每经过一个传输轮次(即往返时延 RTT)指数规律增长,cwnd=2,cwnd=4,cwnd=8,当 cwnd = ssthresh = 16 时,改用拥塞避免算法。

拥塞避免算法:每经过一个传输轮次(即往返时延 RTT),cwnd 加 1,即线性规律增长。只要发送方判断网络出现拥塞,则令 ssthresh = cwnd / 2。然后令 cwnd=1,重新执行慢算法。

【注】传输轮次和往返时延的区别:

  • 传输轮次:发送一批报文段并收到它们的确认的时间。
  • 往返时延 RTT:开始发送一批报文段到开始发送下一批报文段的时间。

例如有以下传输过程:

传输轮次 cwnd 发送的 TCP 数据部分的序号 算法 备注
1 1 0 号 慢开始 初始时,cwnd = 1,ssthresh = 16
2 2 1 ~ 2 号 慢开始
3 4 3 ~ 6 号 慢开始
4 8 7 ~ 14 号 慢开始
5 16 15 ~ 30 号 拥塞避免 cwnd = ssthresh = 16
6 17 31 ~ 47 号 拥塞避免
7 18 48 ~ 64 号 拥塞避免
13 24 171 ~ 194 号 拥塞避免 重传计时器发生超时,说明网络拥塞,ssthresh = cwnd/2 = 12
14 1 195 号 慢开始 cwnd 重新设置为 1
15 2 196 ~ 197 号 慢开始
16 4 198 ~ 201 号 慢开始
17 8 202 ~ 209 号 慢开始
18 12 210 ~ 221 号 拥塞避免 cwnd = 16 > ssthresh = 12,改用拥塞避免算法
19 13 222 ~ 234 号 拥塞避免

慢开始和拥塞避免算法的实现过程如下图:

【计算机网络-传输层】TCP 协议

【注】慢开始和拥塞避免的含义:

  • “慢开始”是指一开始向网络注入的报文段少,而并不是指拥塞窗口 cwnd 的值增长速度慢。
  • “拥塞避免”也并非指完全能够避免拥塞,而是指在拥塞避免阶段将 cwnd 值控制为按线性规律增长,使网络比较不容易出现拥塞。

5.2 快重传和快恢复

快重传和快恢复是对慢开始和拥塞避免算法的改进。根据发送方的拥塞窗口 cwnd 的大小执行不同的算法:

  • 当 cwnd < ssthresh 时,若是首次传输,则使用慢开始算法;如果不是首次传输,则使用拥塞避免算法;
  • 当 cwnd > ssthresh 时,使用拥塞避免算法;
  • 当 cwnd = ssthresh 时,使用拥塞避免算法。

快重传算法:当发送方连续接收到三个冗余 ACK 报文时,直接重传对方尚未收到的报文段,而不必等待该报文段的重传计时器超时。

快恢复算法:当发送方连续接收到三个冗余 ACK 报文时,令 ssthresh = cwnd / 2,然后 cwnd 从该 ssthresh 开始线性增加。

例如有以下传输过程:

传输轮次 cwnd 发送的 TCP 数据部分的序号 算法 备注
1 1 0 号 慢开始 初始时,cwnd = 1,ssthresh = 16
2 2 1 ~ 2 号 慢开始
3 4 3 ~ 6 号 慢开始
4 8 7 ~ 14 号 慢开始
5 16 15 ~ 30 号 拥塞避免 cwnd = ssthresh = 16
6 17 31 ~ 47 号 拥塞避免
7 18 48 ~ 64 号 拥塞避免
13 24 171 ~ 194 号 拥塞避免 发送方连续收到三个冗余 ACK 报文,说明网络拥塞,ssthresh = cwnd/2 = 12
14 12 195 ~ 206 号 拥塞避免 cwnd 设置为 ssthresh = 12
15 13 207 ~ 219 号 拥塞避免
16 14 220 ~ 233 号 拥塞避免
17 15 234 ~ 248 号 拥塞避免
18 16 249 ~ 264 号 拥塞避免
19 17 265 ~ 281 号 拥塞避免

快重传和快恢复算法的实现过程如下图:

【计算机网络-传输层】TCP 协议

需要注意,发送方的发送窗口由接收方的接收窗口和发送方的拥塞窗口两者的最小值所决定,即swnd = min(rwnd, cwnd)文章来源地址https://www.toymoban.com/news/detail-412382.html

到了这里,关于【计算机网络-传输层】TCP 协议的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • [计算机网络]深度学习传输层TCP协议

    💓 博客主页:从零开始的-CodeNinja之路 ⏩ 收录专栏:深度学习传输层TCP协议 🎉欢迎大家点赞👍评论📝收藏⭐文章 TCP全称为\\\"传输控制协议(Transmission Control Protocol\\\"),要对数据的传输进行⼀个详细的控制; 端口号(Port):标识了⼀个主机上进行通信的不同的应用程序; 端口号范围划

    2024年02月20日
    浏览(96)
  • 计算机网络笔记:TCP协议 和UDP协议(传输层)

    TCP 和 UDP都是传输层协议,他们都属于TCP/IP协议族。 TCP的全称是 传输控制协议 是一种 面向连接的、可靠的、基于字节流 的 传输层 通信协议。TCP 是面向连接的、可靠的流协议(流就是指不间断的数据结构) TCP报文 是TCP层传输的数据单元,也称为 报文段 ,一个TCP报文段由

    2024年02月02日
    浏览(50)
  • 【计算机网络】TCP传输控制协议——三次握手

    一开始,客户端和服务端都处于CLOSE状态,先是服务端监听某个端口,处于LISTEN状态。 然后客户端主动发起连接SYN,之后处于SYN-SEND状态。 服务端收到发起的连接,返回SYN,并且ACK客户端的SYN,之后处于SYN-RECV状态。 客户端收到服务端发送的SYN和ACK之后,发送ACK的ACK,之后处

    2024年02月09日
    浏览(46)
  • 计算机网络 运输层下 | TCP概述 可靠传输 流量控制 拥塞控制 连接管理

    TCP是面向连接的运输协议 每一条TCP只能有两个端点,点对点 提供可靠的全双工交付 面向字节流,但占用很多资源 不提供广播和多播服务 所以从某种意义来说 UDP是一种更加有效的工作方式 TCP面向流的概念 把字节写入发送缓冲,加上TCP首部构成TCP报文段,从接收缓存读取字

    2024年02月04日
    浏览(50)
  • 【计算机网络】网络协议五层模型下的各层数据传输的结构(以TCP包为例)

    1.应用层      应用层的数据就是我们写的代码的内容。比如我要传一个字符串 “hello wolrd” 到目的主机,那么 报文M 就表示的是 hello world 的二进制(0 1)形式。      应用层就是我们主机的应用程序的那一层。比如你用 visual studio运行了你写好的代码程序,正在运行的代

    2024年02月03日
    浏览(45)
  • 【计算机网络笔记】传输层服务概述、传输层 vs. 网络层

    什么是计算机网络? 什么是网络协议? 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能(1)——速率、带宽、延迟 计算机网络性能(2)——时延带宽积、丢包率、吞吐量/率 计算机网络体系结构概念 OSI参考模型

    2024年02月08日
    浏览(48)
  • 计算机网络——16概述和传输层服务

    为运行在不同主机上的应用进程提供 逻辑通信 传输协议运行在端系统 发送方:将应用层的报文分成 报文段 ,然后传递给网络层 接收方:将报文段重组成报文,然后传递给应用层 有多个传输层协议可供应用选择 Internet:TCP和UDP 网络层服务:主机之间的逻辑通信 传输层服务

    2024年02月20日
    浏览(41)
  • 计算机网络:传输层(TCP详解)

    TCP报文段结构、可靠数据传输、TCP连接管理(三次握手、四次挥手)、拥塞控制。 点对点: —个发送方,一个接收方 可靠的、按顺序的字节流: 没有报文边界 管道化(流水线): TCP拥塞控制和流量控制设置窗口大小 发送和接收缓存 全双工数据: 在同一连接中数据流双向

    2024年02月04日
    浏览(51)
  • 【计算机网络】传输层协议 -- UDP协议

    传输层是计算机网络中的一个重要层次,位于网络层和应用层之间,它的主要功能是为应用层提供端到端的数据传输服务,负责确保数据可靠传输、流浪控制和拥塞控制等。 传输层的两个主要协议是传输控制协议(TCP)和用户数据报协议(UDP)。它们各自有不同的特点和用途

    2024年02月15日
    浏览(73)
  • 【计算机网络】UDP协议概述

    UDP协议(User Datagram Protocol,用户数据报协议):面向无连接的协议,不保证可靠性,但是具有较低的延迟和更快的传输速度,常用于实时音视频传输、广播和多播等场景。 基于数据报文 :UDP把应用层提交给它的数据报文,添加上UDP首部后传输,每个UDP数据报的大小不能超过

    2024年02月06日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包