梯度提升树(GBDT)原理

这篇具有很好参考价值的文章主要介绍了梯度提升树(GBDT)原理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

梯度提升树(GBDT)原理


GBDT有很多简称,有GBT(Gradient Boosting Tree), GTB(Gradient Tree Boosting ), GBRT(Gradient Boosting Regression Tree), MART(Multiple Additive Regression Tree),其实都是指的同一种算法,本文统一简称GBDT。GBDT在BAT大厂中也有广泛的应用,假如要选择3个最重要的机器学习算法的话,个人认为GBDT应该占一席之地。

1. GBDT概述

GBDT也是集成学习Boosting家族的成员,但是却和传统的Adaboost有很大的不同。回顾下Adaboost,我们是利用前一轮迭代弱学习器的误差率来更新训练集的权重,这样一轮轮的迭代下去。GBDT也是迭代,使用了前向分布算法,但是弱学习器限定了只能使用CART回归树模型,同时迭代思路和Adaboost也有所不同。

在GBDT的迭代中,假设我们前一轮迭代得到的强学习器是 f t − 1 ( x ) f_{t-1}(x) ft1(x), 损失函数是 L ( y , f t − 1 ( x ) ) L(y, f_{t-1}(x)) L(y,ft1(x)), 我们本轮迭代的目标是找到一个CART回归树模型的弱学习器 h t ( x ) h_t(x) ht(x),让本轮的损失损失 L ( y , f t ( x ) ) = L ( y , f t − 1 ( x ) + h t ( x ) ) L(y, f_{t}(x)) =L(y, f_{t-1}(x)+ h_t(x)) L(y,ft(x))=L(y,ft1(x)+ht(x))最小。也就是说,本轮迭代找到决策树,要让样本的损失尽量变得更小。

GBDT的思想可以用一个通俗的例子解释,假如有个人30岁,我们首先用20岁去拟合,发现损失有10岁,这时我们用6岁去拟合剩下的损失,发现差距还有4岁,第三轮我们用3岁拟合剩下的差距,差距就只有一岁了。如果我们的迭代轮数还没有完,可以继续迭代下面,每一轮迭代,拟合的岁数误差都会减小。

从上面的例子看这个思想还是蛮简单的,但是有个问题是这个损失的拟合不好度量,损失函数各种各样,怎么找到一种通用的拟合方法呢?

2. GBDT的负梯度拟合

在上一节中,我们介绍了GBDT的基本思路,但是没有解决损失函数拟合方法的问题。针对这个问题,大牛Freidman提出了用损失函数的负梯度来拟合本轮损失的近似值,进而拟合一个CART回归树。第t轮的第i个样本的损失函数的负梯度表示为 r t i = − [ ∂ L ( y , f ( x i ) ) ) ∂ f ( x i ) ] f ( x ) = f t − 1      ( x ) r_{ti} = -\bigg[\frac{\partial L(y, f(x_i)))}{\partial f(x_i)}\bigg]_{f(x) = f_{t-1}\;\; (x)} rti=[f(xi)L(y,f(xi)))]f(x)=ft1(x)

利用 ( x i , r t i )      ( i = 1 , 2 , . . m ) (x_i,r_{ti})\;\; (i=1,2,..m) (xi,rti)(i=1,2,..m),我们可以拟合一颗CART回归树,得到了第t颗回归树,其对应的叶节点区域 R t j , j = 1 , 2 , . . . , J R_{tj}, j =1,2,..., J Rtj,j=1,2,...,J。其中J为叶子节点的个数。

针对每一个叶子节点里的样本,我们求出使损失函数最小,也就是拟合叶子节点最好的的输出值 c t j c_{tj} ctj如下: c t j = a r g    m i n ( c )      ∑ x i ∈ R t j L ( y i , f t − 1 ( x i ) + c ) c_{tj} = arg\; min(c)\;\;\sum\limits_{x_i \in R_{tj}} L(y_i,f_{t-1}(x_i) +c) ctj=argmin(c)xiRtjL(yi,ft1(xi)+c)

这样我们就得到了本轮的决策树拟合函数如下: h t ( x ) = ∑ j = 1 J c t j I ( x ∈ R t j ) h_t(x) = \sum\limits_{j=1}^{J}c_{tj}I(x \in R_{tj}) ht(x)=j=1JctjI(xRtj)

从而本轮最终得到的强学习器的表达式如下: f t ( x ) = f t − 1 ( x ) + ∑ j = 1 J c t j I ( x ∈ R t j ) f_{t}(x) = f_{t-1}(x) + \sum\limits_{j=1}^{J}c_{tj}I(x \in R_{tj}) ft(x)=ft1(x)+j=1JctjI(xRtj)

通过损失函数的负梯度来拟合,我们找到了一种通用的拟合损失误差的办法,这样无轮是分类问题还是回归问题,我们通过其损失函数的负梯度的拟合,就可以用GBDT来解决我们的分类回归问题。区别仅仅在于损失函数不同导致的负梯度不同而已。

3. GBDT回归算法

好了,有了上面的思路,下面我们总结下GBDT的回归算法。为什么没有加上分类算法一起?那是因为分类算法的输出是不连续的类别值,需要一些处理才能使用负梯度,我们在下一节讲。

输入是训练集样本 T = ( x , y 1 ) , ( x 2 , y 2 ) , . . . ( x m , y m ) T={(x_,y_1),(x_2,y_2), ...(x_m,y_m)} T=(x,y1),(x2,y2),...(xm,ym), 最大迭代次数T, 损失函数L。

输出是强学习器f(x)

1) 初始化弱学习器 f 0 ( x ) = a r g    m i n ( c )      ∑ i = 1 m L ( y i , c ) f_0(x) = arg\; min(c)\;\;\sum\limits_{i=1}^{m}L(y_i, c) f0(x)=argmin(c)i=1mL(yi,c)

2) 对迭代轮数t=1,2,…T有:

a)对样本i=1,2,…m,计算负梯度 r t i = − [ ∂ L ( y , f ( x i ) ) ) ∂ f ( x i ) ] f ( x ) = f t − 1      ( x ) r_{ti} = -\bigg[\frac{\partial L(y, f(x_i)))}{\partial f(x_i)}\bigg]_{f(x) = f_{t-1}\;\; (x)} rti=[f(xi)L(y,f(xi)))]f(x)=ft1(x)

b)利用 ( x i , r t i )      ( i = 1 , 2 , . . m ) (x_i,r_{ti})\;\; (i=1,2,..m) (xi,rti)(i=1,2,..m), 拟合一颗CART回归树,得到第t颗回归树,其对应的叶子节点区域为 R t j , j = 1 , 2 , . . . , J R_{tj}, j =1,2,..., J Rtj,j=1,2,...,J。其中J为回归树t的叶子节点的个数。

c) 对叶子区域j =1,2,…J,计算最佳拟合值 c t j = a r g    m i n ( c )      ∑ x i ∈ R t j L ( y i , f t − 1 ( x i ) + c ) c_{tj} = arg\; min(c)\;\;\sum\limits_{x_i \in R_{tj}} L(y_i,f_{t-1}(x_i) +c) ctj=argmin(c)xiRtjL(yi,ft1(xi)+c)

d) 更新强学习器 f t ( x ) = f t − 1 ( x ) + ∑ j = 1 J c t j I ( x ∈ R t j ) f_{t}(x) = f_{t-1}(x) + \sum\limits_{j=1}^{J}c_{tj}I(x \in R_{tj}) ft(x)=ft1(x)+j=1JctjI(xRtj)

3) 得到强学习器f(x)的表达式 f ( x ) = f T ( x ) = ∑ t = 1 T ∑ j = 1 J c t j I ( x ∈ R t j ) f(x) = f_T(x) = \sum\limits_{t=1}^{T}\sum\limits_{j=1}^{J}c_{tj}I(x \in R_{tj}) f(x)=fT(x)=t=1Tj=1JctjI(xRtj)

4. GBDT分类算法

这里我们再看看GBDT分类算法,GBDT的分类算法从思想上和GBDT的回归算法没有区别,但是由于样本输出不是连续的值,而是离散的类别,导致我们无法直接从输出类别去拟合类别输出的误差。

为了解决这个问题,主要有两个方法,一个是用指数损失函数,此时GBDT退化为Adaboost算法。另一种方法是用类似于逻辑回归的对数似然损失函数的方法。也就是说,我们用的是类别的预测概率值和真实概率值的差来拟合损失。本文仅讨论用对数似然损失函数的GBDT分类。而对于对数似然损失函数,我们又有二元分类和多元分类的区别。

4.1 二元GBDT分类算法

对于二元GBDT,如果用类似于逻辑回归的对数似然损失函数,则损失函数为: L ( y , f ( x ) ) = l o g ( 1 + e x p ( − y f ( x ) ) ) L(y, f(x)) = log(1+ exp(-yf(x))) L(y,f(x))=log(1+exp(yf(x)))

其中 y ∈ − 1 , + 1 y \in{-1, +1} y1,+1。则此时的负梯度误差为 r t i = − [ ∂ L ( y , f ( x i ) ) ) ∂ f ( x i ) ] f ( x ) = f t − 1      ( x ) = y i / ( 1 + e x p ( y f ( x i ) ) ) r_{ti} = -\bigg[\frac{\partial L(y, f(x_i)))}{\partial f(x_i)}\bigg]_{f(x) = f_{t-1}\;\; (x)} = y_i/(1+exp(yf(x_i))) rti=[f(xi)L(y,f(xi)))]f(x)=ft1(x)=yi/(1+exp(yf(xi)))

对于生成的决策树,我们各个叶子节点的最佳残差拟合值为 c t j = a r g    m i n ( c )      ∑ x i ∈ R t j l o g ( 1 + e x p ( y i ( f t − 1 ( x i ) + c ) ) ) c_{tj} = arg\; min(c)\;\;\sum\limits_{x_i \in R_{tj}} log(1+exp(y_i(f_{t-1}(x_i) +c))) ctj=argmin(c)xiRtjlog(1+exp(yi(ft1(xi)+c)))

由于上式比较难优化,我们一般使用近似值代替 c t j = ∑ x i ∈ R t j r t i / ∑ x i ∈ R t j ∣ r t i ∣ ( 2 − ∣ r t i ∣ ) c_{tj} = \sum\limits_{x_i \in R_{tj}}r_{ti}\bigg / \sum\limits_{x_i \in R_{tj}}|r_{ti}|(2-|r_{ti}|) ctj=xiRtjrti/xiRtjrti(2rti)

除了负梯度计算和叶子节点的最佳残差拟合的线性搜索,二元GBDT分类和GBDT回归算法过程相同。

4.2 多元GBDT分类算法

多元GBDT要比二元GBDT复杂一些,对应的是多元逻辑回归和二元逻辑回归的复杂度差别。假设类别数为K,则此时我们的对数似然损失函数为: L ( y , f ( x ) ) = − ∑ k = 1 K y k l o g    p k ( x ) L(y, f(x)) = - \sum\limits_{k=1}^{K}y_klog\;p_k(x) L(y,f(x))=k=1Kyklogpk(x)

其中如果样本输出类别为k,则 y k = 1 y_k=1 yk=1。第k类的概率 p k ( x ) p_k(x) pk(x)的表达式为: p k ( x ) = e x p ( f k ( x ) ) / ∑ l = 1 K e x p ( f l ( x ) ) p_k(x) = exp(f_k(x)) \bigg / \sum\limits_{l=1}^{K} exp(f_l(x)) pk(x)=exp(fk(x))/l=1Kexp(fl(x))

集合上两式,我们可以计算出第t轮的第i个样本对应类别l的负梯度误差为 r t i l = − [ ∂ L ( y , f ( x i ) ) ) ∂ f ( x i ) ] f k ( x ) = f l , t − 1      ( x ) = y i l − p l , t − 1 ( x i ) r_{til} = -\bigg[\frac{\partial L(y, f(x_i)))}{\partial f(x_i)}\bigg]_{f_k(x) = f_{l, t-1}\;\; (x)} = y_{il} - p_{l, t-1}(x_i) rtil=[f(xi)L(y,f(xi)))]fk(x)=fl,t1(x)=yilpl,t1(xi)

观察上式可以看出,其实这里的误差就是样本i对应类别l的真实概率和t-1轮预测概率的差值。

对于生成的决策树,我们各个叶子节点的最佳残差拟合值为 c t j l = a r g    m i n ( c j l )      ∑ i = 0 m ∑ k = 1 K L ( y k , f t − 1 , l ( x ) + ∑ j = 0 J c j l I ( x i ∈ R t j ) c_{tjl} = arg\; min(c_{jl})\;\;\sum\limits_{i=0}^{m}\sum\limits_{k=1}^{K} L(y_k, f_{t-1, l}(x) + \sum\limits_{j=0}^{J}c_{jl} I(x_i \in R_{tj}) ctjl=argmin(cjl)i=0mk=1KL(yk,ft1,l(x)+j=0JcjlI(xiRtj)

由于上式比较难优化,我们一般使用近似值代替 c t j l = K − 1 K    ∑ x i ∈ R t j l r t i l ∑ x i ∈ R t i l ∣ r t i l ∣ ( 1 − ∣ r t i l ∣ ) c_{tjl} = \frac{K-1}{K} \; \frac{\sum\limits_{x_i \in R_{tjl}}r_{til}}{\sum\limits_{x_i \in R_{til}}|r_{til}|(1-|r_{til}|)} ctjl=KK1xiRtilrtil(1rtil)xiRtjlrtil

除了负梯度计算和叶子节点的最佳残差拟合的线性搜索,多元GBDT分类和二元GBDT分类以及GBDT回归算法过程相同。

5. GBDT常用损失函数

这里我们再对常用的GBDT损失函数做一个总结。

对于分类算法,其损失函数一般有对数损失函数和指数损失函数两种:

a) 如果是指数损失函数,则损失函数表达式为 L ( y , f ( x ) ) = e x p ( − y f ( x ) ) L(y, f(x)) = exp(-yf(x)) L(y,f(x))=exp(yf(x))

其负梯度计算和叶子节点的最佳残差拟合参见Adaboost原理篇。

b) 如果是对数损失函数,分为二元分类和多元分类两种,参见4.1节和4.2节。

对于回归算法,常用损失函数有如下4种:

a)均方差,这个是最常见的回归损失函数了 L ( y , f ( x ) ) = ( y − f ( x ) ) 2 L(y, f(x)) =(y-f(x))^2 L(y,f(x))=(yf(x))2

b)绝对损失,这个损失函数也很常见 L ( y , f ( x ) ) = ∣ y − f ( x ) ∣ L(y, f(x)) =|y-f(x)| L(y,f(x))=yf(x)

对应负梯度误差为: s i g n ( y i − f ( x i ) ) sign(y_i-f(x_i)) sign(yif(xi))

c)Huber损失,它是均方差和绝对损失的折衷产物,对于远离中心的异常点,采用绝对损失,而中心附近的点采用均方差。这个界限一般用分位数点度量。损失函数如下:

L ( y , f ( x ) ) = { 1 2 ( y − f ( x ) ) 2 ∣ y − f ( x ) ∣ ≤ δ δ ( ∣ y − f ( x ) ∣ − δ 2 ) ∣ y − f ( x ) ∣ > δ L(y, f(x))= \begin{cases} \frac{1}{2}(y-f(x))^2& {|y-f(x)| \leq \delta}\\ \delta(|y-f(x)| - \frac{\delta}{2})& {|y-f(x)| > \delta} \end{cases} L(y,f(x))={21(yf(x))2δ(yf(x)2δ)yf(x)δyf(x)>δ

对应的负梯度误差为:

r ( y i , f ( x i ) ) = { y i − f ( x i ) ∣ y i − f ( x i ) ∣ ≤ δ δ s i g n ( y i − f ( x i ) ) ∣ y i − f ( x i ) ∣ > δ r(y_i, f(x_i))= \begin{cases} y_i-f(x_i)& {|y_i-f(x_i)| \leq \delta}\\ \delta sign(y_i-f(x_i))& {|y_i-f(x_i)| > \delta} \end{cases} r(yi,f(xi))={yif(xi)δsign(yif(xi))yif(xi)δyif(xi)>δ

d) 分位数损失。它对应的是分位数回归的损失函数,表达式为 L ( y , f ( x ) ) = ∑ y ≥ f ( x ) θ ∣ y − f ( x ) ∣ + ∑ y < f ( x ) ( 1 − θ ) ∣ y − f ( x ) ∣ L(y, f(x)) =\sum\limits_{y \geq f(x)}\theta|y - f(x)| + \sum\limits_{y < f(x)}(1-\theta)|y - f(x)| L(y,f(x))=yf(x)θyf(x)+y<f(x)(1θ)yf(x)

其中 θ \theta θ为分位数,需要我们在回归前指定。对应的负梯度误差为:

r ( y i , f ( x i ) ) = { θ y i ≥ f ( x i ) θ − 1 y i < f ( x i ) r(y_i, f(x_i))= \begin{cases} \theta& { y_i \geq f(x_i)}\\ \theta - 1 & {y_i < f(x_i) } \end{cases} r(yi,f(xi))={θθ1yif(xi)yi<f(xi)

对于Huber损失和分位数损失,主要用于健壮回归,也就是减少异常点对损失函数的影响。

6. GBDT的正则化

和Adaboost一样,我们也需要对GBDT进行正则化,防止过拟合。GBDT的正则化主要有三种方式。

第一种是和Adaboost类似的正则化项,即步长(learning rate)。定义为 ν \nu ν,对于前面的弱学习器的迭代 f k ( x ) = f k − 1 ( x ) + h k ( x ) f_{k}(x) = f_{k-1}(x) + h_k(x) fk(x)=fk1(x)+hk(x)

如果我们加上了正则化项,则有 f k ( x ) = f k − 1 ( x ) + ν h k ( x ) f_{k}(x) = f_{k-1}(x) + \nu h_k(x) fk(x)=fk1(x)+νhk(x)

ν \nu ν的取值范围为 0 < ν ≤ 1 0 < \nu \leq 1 0<ν1。对于同样的训练集学习效果,较小的 ν \nu ν意味着我们需要更多的弱学习器的迭代次数。通常我们用步长和迭代最大次数一起来决定算法的拟合效果。

第二种正则化的方式是通过子采样比例(subsample)。取值为(0,1]。注意这里的子采样和随机森林不一样,随机森林使用的是放回抽样,而这里是不放回抽样。如果取值为1,则全部样本都使用,等于没有使用子采样。如果取值小于1,则只有一部分样本会去做GBDT的决策树拟合。选择小于1的比例可以减少方差,即防止过拟合,但是会增加样本拟合的偏差,因此取值不能太低。推荐在[0.5, 0.8]之间。

使用了子采样的GBDT有时也称作随机梯度提升树(Stochastic Gradient Boosting Tree, SGBT)。由于使用了子采样,程序可以通过采样分发到不同的任务去做boosting的迭代过程,最后形成新树,从而减少弱学习器难以并行迭代的弱点。

第三种是对于弱学习器即CART回归树进行正则化剪枝。在决策树原理篇里我们已经讲过,这里就不重复了。

7. GBDT小结

GBDT终于讲完了,GDBT本身并不复杂,不过要吃透的话需要对集成学习的原理,决策树原理和各种损失函树有一定的了解。由于GBDT的卓越性能,只要是研究机器学习都应该掌握这个算法,包括背后的原理和应用调参方法。目前GBDT的算法比较好的库是xgboost。当然scikit-learn也可以。

最后总结下GBDT的优缺点。

GBDT主要的优点有:

1) 可以灵活处理各种类型的数据,包括连续值和离散值。

2) 在相对少的调参时间情况下,预测的准备率也可以比较高。这个是相对SVM来说的。

3)使用一些健壮的损失函数,对异常值的鲁棒性非常强。比如 Huber损失函数和Quantile损失函数。

GBDT的主要缺点有:

1)由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行。文章来源地址https://www.toymoban.com/news/detail-412384.html

到了这里,关于梯度提升树(GBDT)原理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • GBDT算法原理及实战

      GBDT(Gradient Boosting Decision Tree),全名叫梯度提升决策树,是一种迭代的决策树算法,又叫 MART(Multiple Additive Regression Tree),它 通过构造一组弱的学习器(树),并把多棵决策树的结果累加起来作为最终的预测输出 。该算法将决策树与集成思想进行了有效的结合。   GBDT主要

    2024年02月03日
    浏览(38)
  • GBDT算法原理以及实例理解(含Python代码简单实现版)

    GBDT 的全称是 Gradient Boosting Decision Tree ,梯度提升树,在传统机器学习算法中,GBDT算的上是TOP前三的算法。 想要理解GBDT的真正意义,那就必须理解GBDT中的 Gradient Boosting 和 Decision Tree 分别是什么? 1. Decision Tree:CART回归树 首先, GBDT使用的决策树是CART回归树 ,无论是处理回

    2024年02月02日
    浏览(38)
  • 一文速学-GBDT模型算法原理以及实现+Python项目实战

    目录 前言 一、GBDT算法概述 1.决策树 2.Boosting 3.梯度提升

    2024年01月15日
    浏览(37)
  • 集成学习——Boosting算法:Adaboost、GBDT、XGBOOST和lightGBM的简要原理和区别

    Boosting算法是通过串联的方式,将一组弱学习器提升为强学习器算法。它的工作机制如下: (1)用初始训练集训练出一个基学习器; (2)依据基学习器的表现对训练样本分布进行调整,使得之前做错的训练样本在之后中得到最大的关注; (3)用调整后的样本分布进行下一

    2024年02月16日
    浏览(39)
  • 17- 梯度提升回归树GBRT (集成算法) (算法)

    梯度提升回归树: 梯度提升回归树是区别于 随机森林的另一种集成方法 ,它的特点在于纠正与加强,通过合并多个决策树来构建一个更为强大的模型。 该模型 即可以用于分类 问题,也可以用于 回归 问题中。 在该模型中,有三个重要参数分别为 n_estimators (子树数量)、 lea

    2024年02月03日
    浏览(41)
  • 【Python机器学习】决策树集成——梯度提升回归树

    理论知识:                 梯度提升回归树通过合并多个决策树来构建一个更为强大的模型。虽然名字里有“回归”,但这个模型既能用于回归,也能用于分类。与随机森林方法不同,梯度提升采用连续的方式构造树,每棵树都试图纠正前一棵树的错误。默认情况下,

    2024年02月01日
    浏览(41)
  • 集成学习算法梯度提升(gradient boosting)的直观看法

    reference: Intuitive Ensemble Learning Guide with Gradient Boosting 梯度提升算法的核心思想:使用前一个模型的残差作为下一个模型的目标。 使用单个机器学习模型可能并不总是适合数据。优化其参数也可能无济于事。一种解决方案是将多个模型组合在一起以拟合数据。本教程以梯度提

    2023年04月09日
    浏览(53)
  • 机器学习 | Python实现XGBoost极限梯度提升树模型答疑

    问题系列 关于XGBoost有几个问题想请教一下。1.XGBoost的API有哪些种调用方法?2.参数如何调? 问题回答 XGBoost的API有2种调用方法,一种是我们常见的原生API,一种是兼容Scikit-learn API的API,Scikit-learn API与Sklearn生态系统无缝集成。 对于XGBoost来说,默认的超参数是可以正常运行的

    2024年02月09日
    浏览(41)
  • R语言生存分析(机器学习)(1)——GBM(梯度提升机)

    GBM是一种集成学习算法,它结合了多个弱学习器(通常是决策树)来构建一个强大的预测模型。GBM使用“Boosting”的技术来训练弱学习器,这种技术是一个迭代的过程,每一轮都会关注之前轮次中预测效果较差的样本,以便更专注地对它们进行建模。这有助于逐步减少整体预

    2024年02月12日
    浏览(42)
  • 【Sklearn】基于梯度提升树算法的数据分类预测(Excel可直接替换数据)

    梯度提升树(Gradient Boosting Trees)是一种集成学习方法,用于解决分类和回归问题。它通过将多个弱学习器(通常是决策树)组合成一个强学习器,以逐步减小预测误差。下面是梯度提升树的模型原理和数学公式的解释。 模型原理: 损失函数(Loss Function): 在梯度提升树中

    2024年02月12日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包