1 深度残差网络
随着CNN的不断发展,为了获取深层次的特征,卷积的层数也越来越多。一开始的 LeNet 网络只有 5 层,接着 AlexNet 为 8 层,后来 VggNet 网络包含了 19 层,GoogleNet 已经有了 22 层。但仅仅通过增加网络层数的方法,来增强网络的学习能力的方法并不总是可行的,因为网络层数到达一定的深度之后,再增加网络层数,那么网络就会出现随机梯度消失的问题,也会导致网络的准确率下降。以下实验结果也表明确实出现了该现象,论文中称为网络退化现象,注意这和网络过拟合是两种情况。
1.1 什么是梯度爆炸、梯度消失?
上图是一个四层的全连接的网络,包括输入层、隐层(中间除了输入层跟输出层的总和)、输出层,假设每层网络激活后的输出为fi(x),其i表示第i层,x指的是第i层的输入,也就是第i-1层的输出,f是作为激活函数,那么就,反向传播算法是基于梯度下降,以目标负梯度方向对参数进行调整,参数的更新为,如果要更新第二层隐藏层的权值信息,根据链式求导法则:其实类似于就是对激活函数进行求导,如果所求导结果大于1,那么随着层数的增加,求出的梯度的更新将以指数形式相应增加,发生前文所提到的梯度爆炸;如果小于1,求出的梯度的更新将以指数形式相应减少,就会发生梯度消失。
1.2 如何解决这个问题?
为了解决这一问题,传统的方法是采用数据初始化和正则化的方法,这解决了梯度消失的问题,但是网络准确率的问题并没有改善。而残差网络的出现可以解决梯度问题,而网络层数的增加也使其表达的特征也更好,相应的检测或分类的性能更强,再加上残差中使用了 1×1 的卷积,这样可以减少参数量,也能在一定程度上减少计算量。
ResNet 网络的关键就在于其结构中的残差单元,如下图所示,在残差网络单元中包含了跨层连接,图中的曲线可以将输入直接跨层传递,进行了同等映射,之后与经过卷积操作的结果相加。假设输入图像为 x,输出为H(x),中间经过卷积之后的输出为F(x)的非线性函数,那最终的输出为H(x) = F(x) + x,这样的输出仍然可以进行非线性变换,残差指的是“差”,也就是F(x),而网络也就转化为求残差函数F(x) = H(x) - x,这样残差函数要比 F(x) = H (x) 更加容易优化。
Resnet可以理解为三个人之间传话的游戏,第一个人传给第二个人,第二个人传给第三个人,那么第三个人收到的信息可能会由于第二个人理解错误,接收的信息受到影响,增加了传错的概率,所以Resnet的作用可以直跳过第二个人,直接把话给到第三个人。这个就是对于Resnet的简单理解。
1.3 什么是残差?
ResNet提出了两种mapping:一种是identity mapping,指的就是图中”弯弯的曲线”,另一种residual mapping,指的就是除了”弯弯的曲线“那部分,所以最后的输出是 H(x) = F(x) + x,identity mapping顾名思义,就是指本身,也就是公式中的x,而residual mapping指的是“差”,也就是F(x) = H(x)−x,所以残差指的就是F(x)部分,这里有解释了一遍F(x) = H(x)−x。
2 Resnet50 网络
Resnet50网络中包含了49 个卷积层,外加一个全连接层(FC)。如下图所示,Resnet50网络结构可以分成七个部分,第一部分不包含残差块,主要对输入进行卷积、正则化、激活函数、最大池化的计算。第二、三、四、五部分结构都包含了残差块,图中的绿色图块不会改变残差块的尺寸,只用于改变残差块的维度。在Resnet50网络结构中,残差块都有三层卷 积,那网络总共就是有1+3 × (3+4+6+3) = 49个卷积层,加上最后的全连接层总共是50层,这也是Resnet50名称的由来。网络的输入为224×224×3,经过前五部分的卷积计算,输出为7×7×2048,池化层会将其转化成一个特征向量,最后分类器会对这个特征向量进行计算并输出类别概率。
下面这张图片是Resnet文章所展示的结构图,文章会对其进行剖析,让人好理解。
Resnet50的另外一种理解。
2.1 ResNet50整体结构
上图可划分为左、中、右3个部分,三者内容分别:Resnet50整体结构;Resnet50各个stage具体结构;Bottleneck具体结构。
整体结构部分分为5个stage,其中stage 0 的结构是比较简单,可以视其为对INPUT图像的预处理,后4个Stage都由Bottleneck组成,结构较为相似。Stage 1包含3个Bottleneck,剩下的3个stage分别包括4、6、3个Bottleneck。
stage 0 阶段
-
(3,224,224)
指输入INPUT的通道数(channel)、高(height)和宽(width),即(C,H,W)。现假设输入的高度和宽度相等,所以用(C,W,W)表示。
该stage中第1层包括3个先后操作:
1.CONV
CONV是卷积(Convolution)的缩写,7×7指卷积核大小,64指卷积核的数量(即该卷积层输出的通道数),/2指卷积核的步长为2。
2.BN
BN是Batch Normalization的缩写,即常说的BN层。
3.RELU
RELU指ReLU激活函数。 -
该stage中第2层为MAXPOOL,即最大池化层,其卷积核大小为3×3、步长为2。
-
(64,56,56)
是该stage输出的通道数(channel)、高(height)和宽(width),其中64等于该stage第1层卷积层中卷积核的数量,56等于224/2/2(步长为2会使输入尺寸减半)。
总体来讲,在Stage 0中,形状为(3,224,224)
的输入先后经过卷积层、BN层、ReLU激活函数、MaxPooling层得到了形状为(64,56,56)
的输出。
stage 1 阶段
与stage 0类似,stage1输入的形状为(64,56,56)
,输出的形状为(64,56,56)
。
Bottleneck具体结构
现在要介绍2种Bottleneck的结构。“BTNK”指的是BottleNeck的缩写。
2种Bottleneck分别对应了2种情况:输入与输出通道数相同(BTNK2)、输入与输出通道数不同(BTNK1),这一点可以结合ResNet原文。
BTNK2
BTNK2有2个可变的参数C和W,即输入的形状(C,W,W)中的c和W。
令形状为(C,W,W)的输入为x,令BTNK2左侧的3个卷积块(以及相关BN和RELU)为函数F(x),两者相加(F(x)+x)后再经过1个ReLU激活函数,就得到了BTNK2的输出,该输出的形状仍为(C,W,W),即上文所说的BTNK2对应输入x与输出F(x)通道数相同的情况。
BTNK1
BTNK1有4个可变的参数C、W、C1和S。
与BTNK2相比,BTNK1多了1个右侧的卷积层,令其为函数G(x)。BTNK1对应了输入x与输出F(x)通道数不同的情况,也正是这个添加的卷积层将x变为G(x),起到匹配输入与输出维度差异的作用(G(x)和F(x)通道数相同),进而可以进行求和F(x)+G(x)。
总结
ResNet后4个stage中都有BTNK1和BTNK2。
- 4个stage中BTNK2参数规律相同,4个stage中BTNK2的参数全都是1个模式和规律,只是输入的形状(C,W,W)不同。
- stage 1中BTNK1参数的规律与后3个stage不同,然而,4个stage中BTNK1的参数的模式并非全都一样。具体来讲,后3个stage中BTNK1的参数模式一致,stage 1中BTNK1的模式与后3个stage的不一样,这表现在以下2个方面:
1.参数S:BTNK1左右两个1×1卷积层是否下采样:
stage 1中的BTNK1:步长S为1,没有进行下采样,输入尺寸和输出尺寸相等。
后3个stage的BTNK1:步长S为2,进行了下采样,输入尺寸是输出尺寸的2倍。
2.参数C和C1:BTNK1左侧第一个1×1卷积层是否减少通道数
stage 1中的BTNK1:输入通道数C和左侧1×1卷积层通道数C1相等(C=C1=64),即左侧1×1卷积层没有减少通道数。
后3个stage的BTNK1:输入通道数C和左侧1×1卷积层通道数C1不相等(C=2*C1),左侧1×1卷积层有减少通道数。
代码实现
class Bottleneck(nn.Module):
expansion = 4 # 卷积核是前一个卷积核的四倍
def __init__(self, in_channel, out_channel, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
kernel_size=1, stride=1, bias=False) # squeeze channels
self.bn1 = nn.BatchNormalization(out_channel)
# -----------------------------------------
self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3, bias=False,
stride=stride, padding=1)
self.bn2 = nn.BatchNormalization(out_channel)
# -----------------------------------------
self.conv3 = nn.Conv2d(out_channels=out_channel * self.expansion, kernel_size=1, stride=1,
bias=False)
self.bn3 = nn.BatchNormalization(out_channel * self.expansion)
# -----------------------------------------
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
identity = x
if self.downsample is not None: # 为None的话对应实线的残差结构,如果不为None则是虚线的
identity = self.downsample(x)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out = self.add([out, identity])
out = self.relu(out)
return out
引入Resnet50网络之后的效果
文章来源:https://www.toymoban.com/news/detail-412509.html
参考:文章来源地址https://www.toymoban.com/news/detail-412509.html
- https://zhuanlan.zhihu.com/p/353235794
- 哔哩哔哩—霹雳吧啦
- https://arxiv.org/abs/1512.03385
到了这里,关于什么是Resnet50模型?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!