python数学建模--线性规划问题案例及求解

这篇具有很好参考价值的文章主要介绍了python数学建模--线性规划问题案例及求解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本博客参考:

  1. 《python数学实验与建模》
  2. 《MATLAB数学建模经典案例实战》

数学问题:线性规划问题

m a x   z = 8 x 1 − 2 x 2 + 3 x 3 − x 4 − 2 x 5 { x 1 + x 2 + x 3 + x 4 + x 5 ≤ 400 x 1 + 2 x 2 + 2 x 3 + x 4 + 6 x 5 ≤ 800 2 x 1 + x 2 + 6 x 3 ≤ 200 x 3 + x 4 + 5 5 ≤ 200 0 ≤ x i ≤ 99 , i = 1 , 2 , 3 , 4 x 5 ≥ − 10 max \ z=8x_1-2x_2+3x_3-x_4-2x_5\\ \left\{ \begin{aligned} &x_1+x_2+x_3+x_4+x_5\leq 400\\ & x_1+2x_2+2x_3+x_4+6x_5\leq800\\ &2x_1+x_2+6x_3\leq200\\ &x_3+x_4+5_5\leq200\\ &0\leq x_i\leq99,i=1,2,3,4\\ &x_5\geq-10\\ \end{aligned} \right. max z=8x12x2+3x3x42x5 x1+x2+x3+x4+x5400x1+2x2+2x3+x4+6x58002x1+x2+6x3200x3+x4+552000xi99,i=1,2,3,4x510

程序设计

from scipy.optimize import linprog

c=[-8,2,-3,1,2]
A=[[1,1,1,1,1],[1,2,2,1,6],[2,1,6,0,0],[0,0,1,1,5]]
b=[[400],[800],[200],[200]]
aeq=None
beq=None
bounds=((0, 99),(0, 99),(0, 99),(0, 99),(-10,None))
res=linprog(c=c, A_ub=A, b_ub=b, A_eq=aeq, b_eq=beq, bounds=bounds,)

运行结果

python数学建模--线性规划问题案例及求解

结果分析

从中我们看出,目标函数z的最大值应为823左右,此时决策变量 x 1 − x 5 x_1-x_5 x1x5的值分别为[99,0,0.3,0,-10]

实际应用1:加工厂的生产计划

一家加工厂使用牛奶生产A,B两种奶制品,1桶牛奶经甲机器加工12小时得到3kgA,也可以经过乙机器8小时得到4kgB,根据市场需求,生产的A、B可以全部出售并且每kgA获利24元、每kgB获利16元。现在该工厂每天获得50桶牛奶供应,所有工人的最大劳动时间之和为480x小时,甲机器每天最多加工100kgA,乙机器加工不限量,请你为该工厂设计生产计划,使得每天的利润最大

设置未知数

假设每天用于生产A产品的牛奶为 x 1 x_1 x1桶,用于生产B产品的牛奶为 x 2 x_2 x2桶,每天的利润为 z z z元,根据题意建立数学模型

建立数学模型

m a x   z = 3 ∗ 24 x 1 + 4 ∗ 16 x 2 { x 1 + x 2 ≤ 50 12 x 1 + 8 x 2 ≤ 800 3 x 1 ≤ 100 x 1 ≥ 0 , x 2 ≥ 0 max \ z=3*24x_1+4*16x_2\\ \left\{ \begin{aligned} x_1+x_2\leq 50\\ 12x_1+8x_2\leq800\\ 3x_1\leq100\\ x_1\geq0,x_2\geq0 \end{aligned} \right. max z=324x1+416x2 x1+x25012x1+8x28003x1100x10,x20
转化为标准形式
m i n   z = − 3 ∗ 24 x 1 − 4 ∗ 16 x 2 { x 1 + x 2 ≤ 50 12 x 1 + 8 x 2 ≤ 800 3 x 1 ≤ 100 x 1 ≥ 0 , x 2 ≥ 0 min \ z=-3*24x_1-4*16x_2\\ \left\{ \begin{aligned} x_1+x_2\leq 50\\ 12x_1+8x_2\leq800\\ 3x_1\leq100\\ x_1\geq0,x_2\geq0 \end{aligned} \right. min z=324x1416x2 x1+x25012x1+8x28003x1100x10,x20

程序设计

from scipy.optimize import linprog
c=[-72,-64]
A=[[1,1],[12,8]]
b=[[50],[480]]
bounds=((0,100/3.0),(0,None))

res=linprog(c=c, A_ub=A, b_ub=b, A_eq=None, b_eq=None, bounds=bounds) 

运行结果
python数学建模--线性规划问题案例及求解

结果分析

从上面我们可以看出,利润最大值在3360元左右,达到最大值时,A、B产品的牛奶日用量分别是20桶、30桶

实际应用2:油料加工厂的采购和加工计划

某加工厂加工一种油,原料为五种油(植物油1,植物油2、非植物油1,非植物油2、非植物油3),每种油的价格、硬度如图表所示,最终生产的成品将以150英镑/吨

植物油1 植物油2 非植物油1 非植物油2 非植物油3
进货价格 110 120 130 110 115
硬度值 8.8 6.1 2.0 4.2 5.0

每个月能够提炼的植物油不超过200吨、非植物油不超过250吨,假设提炼过程中油料没有损失,提炼费用忽略不计,并且最终的产品的硬度需要在(3-6)之间(假设硬度的混合时线性的)。根据以上信息,请你为加工厂指定月采购和加工计划

设置未知数

假设 x 1 , x 2 , x 3 , x 4 , x 5 x_1,x_2,x_3,x_4,x_5 x1,x2,x3,x4,x5分别为每月需要采购的原料油吨数, x 6 x_6 x6为每个月加工的成品油吨数,根据题意建立数学模型

建立数学模型

m a x   z = − 110 x 1 − 120 x 2 − 130 x 3 − 110 x 4 − 115 x 5 + 150 x 6 { x 1 + x 2 ≤ 200 x 3 + x 4 + x 5 ≤ 250 8.8 x 1 + 6.1 x 2 + 2.0 x 3 + 4.2 x 4 + 5.0 x 5 ≤ 6 x 6 8.8 x 1 + 6.1 x 2 + 2.0 x 3 + 4.2 x 4 + 5.0 x 5 ≥ 3 x 6 x 1 + x 2 + x 3 + x 4 + x 5 = x 6 x i ≥ 0 , i = 1 , 2 , 3 , . . . , 6 max \ z=-110x_1-120x_2-130x_3-110x_4-115x_5+150x_6\\ \left\{ \begin{aligned} x_1+x_2\leq 200\\ x_3+x_4+x_5\leq250\\ 8.8x_1+6.1x_2+2.0x_3+4.2x_4+5.0x_5\leq6x_6\\ 8.8x_1+6.1x_2+2.0x_3+4.2x_4+5.0x_5\geq3x_6\\ x_1+x_2+x_3+x_4+x_5=x_6\\ x_i\geq0,i=1,2,3,...,6 \end{aligned} \right. max z=110x1120x2130x3110x4115x5+150x6 x1+x2200x3+x4+x52508.8x1+6.1x2+2.0x3+4.2x4+5.0x56x68.8x1+6.1x2+2.0x3+4.2x4+5.0x53x6x1+x2+x3+x4+x5=x6xi0,i=1,2,3,...,6

程序设计

from scipy.optimize import linprog

c=[110,120,130,110,115,-150]
A=[[1,1,0,0,0,0],[0,0,1,1,1,0],[8.8,6.1,2.0,4.2,5.0,-6],[-8.8,-6.1,-2.0,-4.2,-5.0,3]]
b=[[200],[250],[0],[0]]
aeq=[[1,1,1,1,1,-1]]
beq=[[0]]
bounds=((0, None),(0, None),(0, None),(0, None),(0,None),(0,450))
# bounds=((0, None),(0, None),(0, None),(0, None),(0,None),(0,None))
res=linprog(c=c, A_ub=A, b_ub=b, A_eq=aeq, b_eq=beq, bounds=bounds)

运行结果
python数学建模--线性规划问题案例及求解

结果分析

从上面我们可以看到,五种原料油的采购量分别为[159.25,40.7407,0,250,0](吨),此时总利润可以达到最大,约为17592英镑/月

笔者发现的一个没有用的小技巧:我们知道 x 6 x_6 x6变量代表的是每个月的吨数,bounds参数设置决策变量的取值区间,当在bounds中对x_6的上界不加限制时,即(0,None),模型返回的结果中仍然将 x 6 x_6 x6收敛至450,你知道这是为什么吗?

遗留的问题

经过这么多的应用,我们已经大致明白了scipy.optimize.linprog()函数的使用过程,也惊叹于它的便利之处,但是不知道你是否能发现该函数的缺点?
我们来看下面一个问题

钢管加工用料问题

某零售商从钢管厂进货后将钢管切割后卖给客户,某次进货该零售商得到了若干1850mm长的原料钢管。现有一客户需要15根290mm、28根315mm、21根350mm、30根455mm的钢管。对于一个原料钢管有四种切割模式,每次切割模式下的切割次数不能太多(一根原料钢管最多生产5根产品),为减少余料浪费,每种切割模式下的余料浪费不能超过100mm。(要完成该客户的需求,需要若干根原料钢管,可能用到四种切割模式,现规定使用频率最多的切割模式按照一根原料钢管价格的1/10收取加工费,使用频率次之的切割模式按照一根原料钢管价格的2/10收取加工费,依次类推)。现在求使得该零售商总费用最小的切割计划?

分析

仔细分析我们会发现,这个问题的线性规划和上面的两个实际问题有很大不同。

在上面的问题中,决策变量只有一种 x 1 − x n x_1-x_n x1xn,而且决策变量的系数的都是常数(比如 x 3 + x 4 + x 5 ≤ 250 x_3+x_4+x_5\leq250 x3+x4+x5250中的每个自变量系数都是1)。但是在该问题中似乎有两种决策变量:切割模式的使用频次 x i x_i xi、每种切割模式下对于一根原料钢管产生的成品钢管种类及数量 r i j r_{ij} rij(i表示第i种切割模式,j表示第j种成品钢管)。

scipy.optimize.linprog()的缺陷?

这就让我们在列举约束条件时遇到了很大的困难,比如其中一个不等式是这样的 ∑ i = 1 4 x i × r 1 i ≥ 15 ( i = 1...4 ) \sum^4_{i=1}x_i\times r_{1i}\geq15(i=1...4) i=14xi×r1i15(i=1...4),看到这里我们发现两个决策变量相乘,如果继续使用scipy.optimize.linprog()函数,参数A_ub怎么取?参数bounds到底该以谁作为决策变量?

现在我们似乎遇到了困难,实际上并不是linprog()函数的问题,因为函数就是用来求解线性规划问题的,而我们现在提出的这个问题是一个非线性规划问题,所以,要解决它我们需要“另辟蹊径”了!下一个博客我们将用另外一个第三方库解决这个问题文章来源地址https://www.toymoban.com/news/detail-412615.html

到了这里,关于python数学建模--线性规划问题案例及求解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模__非线性规划Python实现

    线性规划指的是目标模型均为线性,除此以外的都是非线性规划,使用scipy提供的方法对该类问题进行求解。

    2024年02月07日
    浏览(51)
  • 【数学建模】Python+Gurobi求解非线性规划模型

    目录 1 概述 2 算例  2.1 算例 2.2 参数设置 2.3 Python代码实现 2.4 求解结果 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。 参考:(非线性规划Python)计及动态约束及节能减排环保要求的经济调度 2.1 算例 2.2 参数设置 求解NLP/非凸问题时,

    2024年02月09日
    浏览(47)
  • 数学建模整理-线性规划、整数规划、非线性规划

    在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。若目标函数及约束条件均为线性函数,则称为线性规划(Linear Programming 简记 LP)。 可行解 :满足约束条件的解。 可行预 :所有可行解构成的集合称为问题的可行域,记为R。 图解法

    2024年02月06日
    浏览(41)
  • 数学建模——线性规划

    目录 基本概念 模型求解和应用 基于求解器的求解方法 基于问题的求解方法 其他  运筹学的一个重要分支是数学规划,线性规划是数学规划的一个重要的分支。 变量称为 决策变量 ,规划的目标称为 目标函数 ,限制条件称为 约束条件 ,s.t.是“受约束于”的意思。 建立线

    2024年01月18日
    浏览(45)
  • 【数学建模】线性规划

    1.1线性规划的实例与定义 1.2线性规划的Matlab标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab中规定线性规划的标准形式为 其中c和x为n维列向量,A,Aeq为适当维数

    2024年02月09日
    浏览(44)
  • 数学建模——线性规划类

    [x,y]=linprog(c,A,b,Aeq,beq,lb,ub) 例如: max需要加负号变成min、=需要加负号变成= matlab (1)基于求解器 (2)基于问题 con中根据符号分类 python (1)绝对值 (2)min(max(q*x)) (见风投案例模型二) 【0】题目描述 【1】模型一 模型一:设定风险度的最大接受值,在不太冒险的情况下

    2024年02月13日
    浏览(45)
  • 数学建模(二)线性规划

    课程推荐:6 线性规划模型基本原理与编程实现_哔哩哔哩_bilibili 目录 一、线性规划的实例与定义 1.1 线性规划的实例 1.2 线性规划的定义 1.3 最优解 1.4 线性规划的Mathlab标准形式 1.5 使用linprog函数 二、线性规划模型建模实战与代码 2.1 问题提出 2.2 基本假设 2.3 模型的分析与建

    2024年02月12日
    浏览(42)
  • 数学建模十大算法03—线性规划、整数规划、非线性规划、多目标规划

    一、线性规划(Linear Programming,LP) 1.1 引例 在人们的生产实践中,经常会遇到 如何利用现有资源来安排生产,以取得最大经济效益的问题。 此类问题构成了运筹学的一个重要分支一数学规划,而 线性规划(Linear Programming, LP) 则是数学规划的一个重要分支。 简而言之,线

    2024年02月13日
    浏览(46)
  • 数学建模| 线性规划(Matlab)

    线性规划:约束条件和目标函数都是线性的。简单点说,所有的决策变量在目标函数和约束条件中都是一次方。 Matlab函数: 参数解释: func 表示目标函数。 A 表示不等式约束条件系数矩阵,b 表示不等式约束条件常数矩阵。 Aeq 表示等式约束条件系数矩阵,beq 表示等式约束条

    2024年02月07日
    浏览(44)
  • 数学建模——非线性规划

    目录 基本概念 凸规划 判别定理 二次规划模型 非线性规划的求解 无约束极值问题 有约束极值问题 基于求解器的解法 基于问题的求解 其他 非线性规划:描述目标函数或约束条件条件的数学表达式中,至少有一个是非线性函数。 记是n维欧式空间中的一个点(n维向量),,

    2024年02月06日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包