提供 YOLOv5 / YOLOv7 / YOLOv7-tiny 模型 YAML 文件
论文地址:https://arxiv.org/pdf/2103.14030.pdf
代码地址:https://github.com/microsoft/Swin-Transformer文章来源:https://www.toymoban.com/news/detail-412647.html
本文介绍了一种新的视觉Transformer
,称为Swin Transformer
,它可以作为计算机视觉通用的骨干网络。从语言到视觉的转换中,适应Transformer
所面临的挑战源于两个领域之间的差异,如视觉实体尺度的巨大变化和图像中像素的高分辨率与文本中单词的差异。为了解决这些差异,我们提出了一种分层Transformer
,其表示是通过Shifted
窗口计算的。Shifted
窗口方案通过将自注意计算限制在非重叠的本地窗口内,同时允许跨窗口连接,从而提高了效率。这种分层架构具有在不同尺度下进行建模的灵活性,并且与图像大小的计算复杂度呈线性关系。这些特性使Swin Transformer
与广泛的视觉任务兼容,包括图像分类(在ImageNet-1K
上的87.3</
文章来源地址https://www.toymoban.com/news/detail-412647.html
到了这里,关于YOLOv5/v7 更换骨干网络之 SwinTransformer的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!