在前面我学习了使用K210训练模型做目标检测,然后也学会了使用K210做串口通信,学完之后我就把K210丢在箱子里吃灰了,因为学校疫情原因,两年一届的电赛很遗憾不能参加了,然后我就想拿他做个口罩检测系统(检测到没戴口罩可以语言提醒),这个真的好简单,哈哈哈,接下来加点难度,做个垃圾分类系统,半天就做好了。哈哈哈,希望想做这两个项目的各位看了这篇博客也能很快的做出来,加油。
基于K210的口罩检测系统
K210垃圾分类
前言
做项目,参加比赛才能真正的学到东西,将理论应用于实践,一起加油,一起进步。
一、前提准备
1.32单片机(这里我使用的是zet6最小系统板和c8t6)
2.K210(什么型号都可以)
3.SYN6288语音播报模块
4.舵机
5.垃圾桶
Keil5软件和Maixpy软件
二、项目实战
1.口罩检测系统
1.模型
相信大家看完我的第一篇博客,口罩检测的模型已经训练出来了,大家按照我上一篇介绍的脱机运行烧录到自己的K210里,这时脱机检测就可以运行了。
如下图
2.发送数据
如果大家还不会串口通信可以看我的博客,里面详细介绍了关于K210的串口通信部分,相信大家看完后就可以将masks,un_masks。数据发送到电脑上了。
如下图
3.SYN6288语音播报模块
这个便是这个项目第二个重要的部分了,通过单片机接收到数据,然后发送给语音播报模块,语音播报模块处理数据,播报出相应的语音。在这里因为只有两个标签,我没有处理字符串,直接用的接收到字符长度来判断的,所以我用了很短的时间就做出来了。
.c文件如下
#include "syn6288.h"
#include "usart.h"
#include "string.h"
#include "delay.h"
//Music:Ñ¡Ôñ±³¾°ÒôÀÖ¡£0:ÎÞ±³¾°ÒôÀÖ£¬1~15£ºÑ¡Ôñ±³¾°ÒôÀÖ
void SYN_FrameInfo(u8 Music, u8 *HZdata)
{
/****************ÐèÒª·¢Ë͵ÄÎı¾**********************************/
unsigned char Frame_Info[50];
unsigned char HZ_Length;
unsigned char ecc = 0; //¶¨ÒåУÑé×Ö½Ú
unsigned int i = 0;
HZ_Length = strlen((char*)HZdata); //ÐèÒª·¢ËÍÎı¾µÄ³¤¶È
/*****************Ö¡¹Ì¶¨ÅäÖÃÐÅÏ¢**************************************/
Frame_Info[0] = 0xFD ; //¹¹ÔìÖ¡Í·FD
Frame_Info[1] = 0x00 ; //¹¹ÔìÊý¾ÝÇø³¤¶ÈµÄ¸ß×Ö½Ú
Frame_Info[2] = HZ_Length + 3; //¹¹ÔìÊý¾ÝÇø³¤¶ÈµÄµÍ×Ö½Ú
Frame_Info[3] = 0x01 ; //¹¹ÔìÃüÁî×Ö£ººÏ³É²¥·ÅÃüÁî
Frame_Info[4] = 0x01 | Music << 4 ; //¹¹ÔìÃüÁî²ÎÊý£º±³¾°ÒôÀÖÉ趨
/*******************УÑéÂë¼ÆËã***************************************/
for(i = 0; i < 5; i++) //ÒÀ´Î·¢Ë͹¹ÔìºÃµÄ5¸öÖ¡Í·×Ö½Ú
{
ecc = ecc ^ (Frame_Info[i]); //¶Ô·¢Ë͵Ä×Ö½Ú½øÐÐÒì»òУÑé
}
for(i = 0; i < HZ_Length; i++) //ÒÀ´Î·¢ËÍ´ýºÏ³ÉµÄÎı¾Êý¾Ý
{
ecc = ecc ^ (HZdata[i]); //¶Ô·¢Ë͵Ä×Ö½Ú½øÐÐÒì»òУÑé
}
/*******************·¢ËÍÖ¡ÐÅÏ¢***************************************/
memcpy(&Frame_Info[5], HZdata, HZ_Length);
Frame_Info[5 + HZ_Length] = ecc;
USART3_SendString(Frame_Info, 5 + HZ_Length + 1);
}
/***********************************************************
* Ãû ³Æ£º YS_SYN_Set(u8 *Info_data)
* ¹¦ ÄÜ£º Ö÷º¯Êý ³ÌÐòÈë¿Ú
* Èë¿Ú²ÎÊý£º *Info_data:¹Ì¶¨µÄÅäÖÃÐÅÏ¢±äÁ¿
* ³ö¿Ú²ÎÊý£º
* ˵ Ã÷£º±¾º¯ÊýÓÃÓÚÅäÖã¬Í£Ö¹ºÏ³É¡¢ÔÝÍ£ºÏ³ÉµÈÉèÖà £¬Ä¬Èϲ¨ÌØÂÊ9600bps¡£
* µ÷Ó÷½·¨£ºÍ¨¹ýµ÷ÓÃÒѾ¶¨ÒåµÄÏà¹ØÊý×é½øÐÐÅäÖá£
**********************************************************/
void YS_SYN_Set(u8 *Info_data)
{
u8 Com_Len;
Com_Len = strlen((char*)Info_data);
USART3_SendString(Info_data, Com_Len);
}
不知道为什么从keil5粘贴过来变成了乱码,你粘贴到keil5是没有问题的
.h文件如下
#ifndef __SYN6288_H
#define __SYN6288_H
#include "sys.h"
void SYN_FrameInfo(u8 Music, u8 *HZdata);
void YS_SYN_Set(u8 *Info_data);
#endif
主函数部分如下
if(len==6)
{
TIM_SetCompare2(TIM4, 1910);
SYN_FrameInfo(0, "[v7][m1][t5]ÇëÄúÕýÈ·Åå´÷¿ÚÕÖ");
delay_ms(8000);
delay_ms(8000);
delay_ms(8000);
delay_ms(8000);
TIM_SetCompare2(TIM4, 1850);
}
if(len==5)
{
TIM_SetCompare4(TIM4, 1930);
SYN_FrameInfo(0, "[v7][m1][t5]ÄúÒÑÅå´÷¿ÚÕÖ");
delay_ms(8000);
delay_ms(8000);
delay_ms(8000);
delay_ms(2000);
到这里整个项目就算完成了,当你真正学会了K210之后你就会发现真的好简单。
完整的工程代码和K210代码需要的话可以在下面留下你的邮箱,我会发到你的邮箱里。
我也将完整的32代码和K210文件上传到了我的资源里,需要的也可以自行下载。
2.垃圾分类系统
1.模型
同样你需要做垃圾分类,你就要训练垃圾的模型,还需要不同种类,这里我放上标注好的图片链接,大家可以自行训练。(不会的可以看我主页链接)
链接:https://pan.baidu.com/s/1K6qbEQZ97PcyMWcgTCq1hw
提取码:qhnx
训练好之后,将模型烧录进sd卡,让K210进行脱机运行,检测一下垃圾模型是不是对的。
如下图
2.串口通信数据处理部分
又到了串口通信部分,大家可以看我主页另外一篇博客,这里我不过多赘述了。和上面一样。
3.SYN6288语音播报模块
同上,代码如下
.c
(这里就是很简单的32定时器配置)
#include "timer.h"
u16 t=0;
void TIM2_Int_Init(u16 arr,u16 psc)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); //ʱÖÓʹÄÜ
//¶¨Ê±Æ÷TIM3³õʼ»¯
TIM_TimeBaseStructure.TIM_Period = 999; //ÉèÖÃÔÚÏÂÒ»¸ö¸üÐÂʼþ×°Èë»î¶¯µÄ×Ô¶¯ÖØ×°ÔؼĴæÆ÷ÖÜÆÚµÄÖµ
TIM_TimeBaseStructure.TIM_Prescaler =71; //ÉèÖÃÓÃÀ´×÷ΪTIMxʱÖÓƵÂʳýÊýµÄÔ¤·ÖƵֵ
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //ÉèÖÃʱÖÓ·Ö¸î:TDTS = Tck_tim
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIMÏòÉϼÆÊýģʽ
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); //¸ù¾ÝÖ¸¶¨µÄ²ÎÊý³õʼ»¯TIMxµÄʱ¼ä»ùÊýµ¥Î»
TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE ); //ʹÄÜÖ¸¶¨µÄTIM3ÖжÏ,ÔÊÐí¸üÐÂÖжÏ
//ÖжÏÓÅÏȼ¶NVICÉèÖÃ
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; //TIM3ÖжÏ
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //ÏÈÕ¼ÓÅÏȼ¶0¼¶
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //´ÓÓÅÏȼ¶3¼¶
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQͨµÀ±»Ê¹ÄÜ
NVIC_Init(&NVIC_InitStructure); //³õʼ»¯NVIC¼Ä´æÆ÷
TIM_Cmd(TIM2, DISABLE); //ʹÄÜTIMx //ÏȹرÕ
}
//¶¨Ê±Æ÷3ÖжϷþÎñ³ÌÐò
void TIM2_IRQHandler(void) //TIM3ÖжÏ
{
if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) //¼ì²éTIM3¸üÐÂÖжϷ¢ÉúÓë·ñ
{
t++;
TIM_ClearITPendingBit(TIM2, TIM_IT_Update ); //Çå³ýTIMx¸üÐÂÖжϱêÖ¾
}
}
void TIM3_PWM_Init(u16 arr,u16 psc)//¶à·¶æ»ú¿ØÖÆ£¬¶¨Òå¶ÔÓ¦Òý½Å£¬Ê¹ÄÜÏàӦͨµÀ£¬Ö÷º¯ÊýͬÑùÐèҪʹÄÜÏàӦͨµÀ
{
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //ʹÄܶ¨Ê±Æ÷3ʱÖÓ
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOA , ENABLE); //ʹÄÜGPIOÍâÉèºÍAFIO¸´Óù¦ÄÜÄ£¿éʱÖÓ
//GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3, ENABLE); //Timer3²¿·ÖÖØÓ³Éä TIM3_CH2->PB5
//ÉèÖøÃÒý½ÅΪ¸´ÓÃÊä³ö¹¦ÄÜ,Êä³öTIM3 CH2µÄPWMÂö³å²¨ÐÎ GPIOB.5
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP; //ÉèÖÃΪ¸´ÓÃÍÆÍìÊä³ö
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_6|GPIO_Pin_7;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_Init(GPIOA,&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0|GPIO_Pin_1;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_Init(GPIOB,&GPIO_InitStructure);
//³õʼ»¯TIM3
TIM_TimeBaseStructure.TIM_Period = arr; //ÉèÖÃÔÚÏÂÒ»¸ö¸üÐÂʼþ×°Èë»î¶¯µÄ×Ô¶¯ÖØ×°ÔؼĴæÆ÷ÖÜÆÚµÄÖµ
TIM_TimeBaseStructure.TIM_Prescaler =psc; //ÉèÖÃÓÃÀ´×÷ΪTIMxʱÖÓƵÂʳýÊýµÄÔ¤·ÖƵֵ
TIM_TimeBaseStructure.TIM_ClockDivision = 0; //ÉèÖÃʱÖÓ·Ö¸î:TDTS = Tck_tim
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIMÏòÉϼÆÊýģʽ
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //¸ù¾ÝTIM_TimeBaseInitStructÖÐÖ¸¶¨µÄ²ÎÊý³õʼ»¯TIMxµÄʱ¼ä»ùÊýµ¥Î»
//³õʼ»¯TIM3 Channel2 PWMģʽ
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //Ñ¡Ôñ¶¨Ê±Æ÷ģʽ:TIMÂö³å¿í¶Èµ÷ÖÆģʽ2
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //±È½ÏÊä³öʹÄÜ
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //Êä³ö¼«ÐÔ:TIMÊä³ö±È½Ï¼«ÐÔ¸ß
TIM_OC1Init(TIM3, &TIM_OCInitStructure); //¸ù¾ÝTÖ¸¶¨µÄ²ÎÊý³õʼ»¯ÍâÉèTIM3 OC2
TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Enable); //ʹÄÜTIM3ÔÚCCR2ÉϵÄԤװÔؼĴæÆ÷
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //Ñ¡Ôñ¶¨Ê±Æ÷ģʽ:TIMÂö³å¿í¶Èµ÷ÖÆģʽ2
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //±È½ÏÊä³öʹÄÜ
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //Êä³ö¼«ÐÔ:TIMÊä³ö±È½Ï¼«ÐÔ¸ß
TIM_OC2Init(TIM3, &TIM_OCInitStructure); //¸ù¾ÝTÖ¸¶¨µÄ²ÎÊý³õʼ»¯ÍâÉèTIM3 OC2
TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable); //ʹÄÜTIM3ÔÚCCR2ÉϵÄԤװÔؼĴæÆ÷
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //Ñ¡Ôñ¶¨Ê±Æ÷ģʽ:TIMÂö³å¿í¶Èµ÷ÖÆģʽ2
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //±È½ÏÊä³öʹÄÜ
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //Êä³ö¼«ÐÔ:TIMÊä³ö±È½Ï¼«ÐÔ¸ß
TIM_OC3Init(TIM3, &TIM_OCInitStructure); //¸ù¾ÝTÖ¸¶¨µÄ²ÎÊý³õʼ»¯ÍâÉèTIM3 OC2
TIM_OC3PreloadConfig(TIM3, TIM_OCPreload_Enable); //ʹÄÜTIM3ÔÚCCR2ÉϵÄԤװÔؼĴæÆ÷
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //Ñ¡Ôñ¶¨Ê±Æ÷ģʽ:TIMÂö³å¿í¶Èµ÷ÖÆģʽ2
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //±È½ÏÊä³öʹÄÜ
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //Êä³ö¼«ÐÔ:TIMÊä³ö±È½Ï¼«ÐÔ¸ß
TIM_OC4Init(TIM3, &TIM_OCInitStructure); //¸ù¾ÝTÖ¸¶¨µÄ²ÎÊý³õʼ»¯ÍâÉèTIM3 OC2
TIM_OC4PreloadConfig(TIM3, TIM_OCPreload_Enable); //ʹÄÜTIM3ÔÚCCR2ÉϵÄԤװÔؼĴæÆ÷
TIM_Cmd(TIM3, ENABLE); //ʹÄÜTIM3
}
void TIM4_PWM_Init(u16 arr,u16 psc)
{
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE); //ʹÄܶ¨Ê±Æ÷3ʱÖÓ
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB , ENABLE); //ʹÄÜGPIOÍâÉèºÍAFIO¸´Óù¦ÄÜÄ£¿éʱÖÓ
//GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3, ENABLE); //Timer3²¿·ÖÖØÓ³Éä TIM3_CH2->PB5
//ÉèÖøÃÒý½ÅΪ¸´ÓÃÊä³ö¹¦ÄÜ,Êä³öTIM3 CH2µÄPWMÂö³å²¨ÐÎ GPIOB.5
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP; //ÉèÖÃΪ¸´ÓÃÍÆÍìÊä³ö
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_9|GPIO_Pin_6|GPIO_Pin_7|GPIO_Pin_8;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_Init(GPIOB,&GPIO_InitStructure);
//³õʼ»¯TIM3
TIM_TimeBaseStructure.TIM_Period = arr; //ÉèÖÃÔÚÏÂÒ»¸ö¸üÐÂʼþ×°Èë»î¶¯µÄ×Ô¶¯ÖØ×°ÔؼĴæÆ÷ÖÜÆÚµÄÖµ
TIM_TimeBaseStructure.TIM_Prescaler =psc; //ÉèÖÃÓÃÀ´×÷ΪTIMxʱÖÓƵÂʳýÊýµÄÔ¤·ÖƵֵ
TIM_TimeBaseStructure.TIM_ClockDivision = 0; //ÉèÖÃʱÖÓ·Ö¸î:TDTS = Tck_tim
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIMÏòÉϼÆÊýģʽ
TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure); //¸ù¾ÝTIM_TimeBaseInitStructÖÐÖ¸¶¨µÄ²ÎÊý³õʼ»¯TIMxµÄʱ¼ä»ùÊýµ¥Î»
//³õʼ»¯TIM3 Channel2 PWMģʽ
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //Ñ¡Ôñ¶¨Ê±Æ÷ģʽ:TIMÂö³å¿í¶Èµ÷ÖÆģʽ2
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //±È½ÏÊä³öʹÄÜ
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //Êä³ö¼«ÐÔ:TIMÊä³ö±È½Ï¼«ÐÔ¸ß
TIM_OC1Init(TIM4, &TIM_OCInitStructure); //¸ù¾ÝTÖ¸¶¨µÄ²ÎÊý³õʼ»¯ÍâÉèTIM3 OC2
TIM_OC1PreloadConfig(TIM4, TIM_OCPreload_Enable); //ʹÄÜTIM3ÔÚCCR2ÉϵÄԤװÔؼĴæÆ÷
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //Ñ¡Ôñ¶¨Ê±Æ÷ģʽ:TIMÂö³å¿í¶Èµ÷ÖÆģʽ2
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //±È½ÏÊä³öʹÄÜ
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //Êä³ö¼«ÐÔ:TIMÊä³ö±È½Ï¼«ÐÔ¸ß
TIM_OC2Init(TIM4, &TIM_OCInitStructure); //¸ù¾ÝTÖ¸¶¨µÄ²ÎÊý³õʼ»¯ÍâÉèTIM3 OC2
TIM_OC2PreloadConfig(TIM4, TIM_OCPreload_Enable); //ʹÄÜTIM3ÔÚCCR2ÉϵÄԤװÔؼĴæÆ÷
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //Ñ¡Ôñ¶¨Ê±Æ÷ģʽ:TIMÂö³å¿í¶Èµ÷ÖÆģʽ2
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //±È½ÏÊä³öʹÄÜ
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //Êä³ö¼«ÐÔ:TIMÊä³ö±È½Ï¼«ÐÔ¸ß
TIM_OC3Init(TIM4, &TIM_OCInitStructure); //¸ù¾ÝTÖ¸¶¨µÄ²ÎÊý³õʼ»¯ÍâÉèTIM3 OC2
TIM_OC3PreloadConfig(TIM4, TIM_OCPreload_Enable); //ʹÄÜTIM3ÔÚCCR2ÉϵÄԤװÔؼĴæÆ÷
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //Ñ¡Ôñ¶¨Ê±Æ÷ģʽ:TIMÂö³å¿í¶Èµ÷ÖÆģʽ2
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //±È½ÏÊä³öʹÄÜ
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //Êä³ö¼«ÐÔ:TIMÊä³ö±È½Ï¼«ÐÔ¸ß
TIM_OC4Init(TIM4, &TIM_OCInitStructure); //¸ù¾ÝTÖ¸¶¨µÄ²ÎÊý³õʼ»¯ÍâÉèTIM3 OC2
TIM_OC4PreloadConfig(TIM4, TIM_OCPreload_Enable); //ʹÄÜTIM3ÔÚCCR2ÉϵÄԤװÔؼĴæÆ÷
TIM_Cmd(TIM4, ENABLE); //ʹÄÜTIM3
}
.h
#ifndef __TIMER_H
#define __TIMER_H
#include "sys.h"
void TIM2_Int_Init(u16 arr,u16 psc);
void TIM3_Int_Init(u16 arr,u16 psc);
void TIM3_PWM_Init(u16 arr,u16 psc);
void TIM3_Int_Init(u16 arr,u16 psc);
void TIM4_Int_Init(u16 arr,u16 psc);
void TIM4_PWM_Init(u16 arr,u16 psc);
#endif
主函数就是简单的PWM波这里就不过多赘述了。到这里垃圾分类也结束了,需要完整的工程文件可以在下面留下邮箱,大家一起学习。稍后我也会讲工程文件上传,需要的可自行下载。文章来源:https://www.toymoban.com/news/detail-412823.html
总结
到这里这篇文章就结束了,学习了K210的模型训练与串口通信,搞了一下口罩检测系统和垃圾分类,做了两个小小的项目练了练手,感觉还不错,哈哈哈。这段时间正在做水果分拣车,等做完之后同样也会写一篇博客记录下来,加油。文章来源地址https://www.toymoban.com/news/detail-412823.html
到了这里,关于K210项目实战(口罩检测系统和垃圾分类系统)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!