NumPy 秘籍中文第二版:二、高级索引和数组概念

这篇具有很好参考价值的文章主要介绍了NumPy 秘籍中文第二版:二、高级索引和数组概念。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

原文:NumPy Cookbook - Second Edition

协议:CC BY-NC-SA 4.0

译者:飞龙

在本章中,我们将介绍以下秘籍:

  • 安装 SciPy
  • 安装 PIL
  • 调整图像大小
  • 比较视图和副本
  • 翻转 Lena
  • 花式索引
  • 位置列表索引
  • 布尔值索引
  • 数独的步幅技巧
  • 广播数组

简介

NumPy 以其高效的数组而闻名。 之所以成名,部分原因是索引容易。 我们将演示使用图像的高级索引技巧。 在深入研究索引之前,我们将安装必要的软件 – SciPy 和 PIL。 如果您认为有此需要,请参阅第 1 章“使用 IPython”的“安装 matplotlib”秘籍。

在本章和其他章中,我们将使用以下导入:

import numpy as np 
import matplotlib.pyplot as plt
import scipy

我们还将尽可能为print() Python 函数使用最新的语法。

注意

Python2 是仍然很流行的主要 Python 版本,但与 Python3 不兼容。Python2 直到 2020 年才正式失去支持。主要区别之一是print()函数的语法。 本书使用的代码尽可能与 Python2 和 Python3 兼容。

本章中的一些示例涉及图像处理。 为此,我们将需要 Python 图像库PIL),但不要担心; 必要时会在本章中提供帮助您安装 PIL 和其他必要 Python 软件的说明和指示。

安装 SciPy

SciPy 是科学的 Python 库,与 NumPy 密切相关。 实际上,SciPy 和 NumPy 在很多年前曾经是同一项目。 就像 NumPy 一样,SciPy 是一个开放源代码项目,已获得 BSD 许可。 在此秘籍中,我们将安装 SciPy。 SciPy 提供高级功能,包括统计,信号处理,线性代数,优化,FFT,ODE 求解器,插值,特殊功能和积分。 NumPy 有一些重叠,但是 NumPy 主要提供数组功能。

准备

在第 1 章,“使用 IPython”中,我们讨论了如何安装setuptoolspip。 如有必要,请重新阅读秘籍。

操作步骤

在此秘籍中,我们将完成安装 SciPy 的步骤:

  • 从源安装:如果已安装 Git,则可以使用以下命令克隆 SciPy 存储库:

    $ git clone https://github.com/scipy/scipy.git
    
    $ python setup.py build
    $ python setup.py install --user
    
    

    这会将 SciPy 安装到您的主目录。 它需要 Python 2.6 或更高版本。

    在构建之前,您还需要安装 SciPy 依赖的以下包:

    • BLASLAPACK
    • C 和 Fortran 编译器

    您可能已经在 NumPy 安装过程中安装了此软件。

  • 在 Linux 上安装 SciPy:大多数 Linux 发行版都包含 SciPy 包。 我们将遵循一些流行的 Linux 发行版中的必要步骤(您可能需要以 root 用户身份登录或具有sudo权限):

    • 为了在 RedHat,Fedora 和 CentOS 上安装 SciPy,请从命令行运行以下指令:

      $ yum install python-scipy
      
      
    • 为了在 Mandriva 上安装 SciPy,请运行以下命令行指令:

      $ urpmi python-scipy
      
      
    • 为了在 Gentoo 上安装 SciPy,请运行以下命令行指令:

      $ sudo emerge scipy
      
      
    • 在 Debian 或 Ubuntu 上,我们需要输入以下指令:

      $ sudo apt-get install python-scipy
      
      
  • 在 MacOSX 上安装 SciPy:需要 Apple Developer Tools(XCode),因为它包含BLASLAPACK库。 可以在 App Store 或 Mac 随附的安装 DVD 中找到它。 或者您可以从 Apple Developer 的连接网站获取最新版本。 确保已安装所有内容,包括所有可选包。

    您可能已经为 NumPy 安装了 Fortran 编译器。 gfortran的二进制文件可以在这个链接中找到。

  • 使用easy_installpip安装 SciPy:您可以使用以下两个命令中的任何一个来安装 SciPy(sudo的需要取决于权限):

    $ [sudo] pip install scipy
    $ [sudo] easy_install scipy
    
    ```** 
    
  • 在 Windows 上安装:如果已经安装 Python,则首选方法是下载并使用二进制发行版。 或者,您可以安装 Anaconda 或 Enthought Python 发行版,该发行版与其他科学 Python 包一起提供。

  • 检查安装:使用以下代码检查 SciPy 安装:

    import scipy
    print(scipy.__version__)
    print(scipy.__file__)
    

    这应该打印正确的 SciPy 版本。

工作原理

大多数包管理器都会为您解决依赖项(如果有)。 但是,在某些情况下,您需要手动安装它们。 这超出了本书的范围。

另见

如果遇到问题,可以在以下位置寻求帮助:

  • freenode#scipy IRC 频道
  • SciPy 邮件列表

安装 PIL

PIL(Python 图像库)是本章中进行图像处理的先决条件。 如果愿意,可以安装 Pillow,它是 PIL 的分支。 有些人喜欢 Pillow API; 但是,我们不会在本书中介绍其安装。

操作步骤

让我们看看如何安装 PIL:

  • 在 Windows 上安装 PIL:使用 Windows 中的 PIL 可执行文件安装 PIL。

  • 在 Debian 或 Ubuntu 上安装:在 Debian 或 Ubuntu 上,使用以下命令安装 PIL:

    $ sudo apt-get install python-imaging
    
    
  • 使用easy_installpip安装:在编写本书时,似乎 RedHat,Fedora 和 CentOS 的包管理器没有对 PIL 的直接支持。 因此,如果您使用的是这些 Linux 发行版之一,请执行此步骤。

    使用以下任一命令安装 :

    $ easy_install PIL
    $ sudo pip install PIL
    
    

另见

  • 可在这里 找到有关 PILLOW(PIL 的分支)的说明。

调整图像大小

在此秘籍中,我们将把 Lena 的样例图像(在 SciPy 发行版中可用)加载到数组中。 顺便说一下,本章不是关于图像操作的。 我们将只使用图像数据作为输入。

注意

Lena Soderberg 出现在 1972 年的《花花公子》杂志中。 由于历史原因,这些图像之一经常用于图像处理领域。 不用担心,该图像完全可以安全工作。

我们将使用repeat()函数调整图像大小。 此函数重复一个数组,这意味着在我们的用例中按一定的大小调整图像大小。

准备

此秘籍的前提条件是必须安装 SciPy,matplotlib 和 PIL。 看看本章和第 1 章,“使用 IPython”的相应秘籍。

操作步骤

通过以下步骤调整图像大小:

  1. 首先,导入SciPy。 SciPy 具有lena()函数。 它用于将图像加载到 NumPy 数组中:

    lena = scipy.misc.lena()
    
    

    从 0.10 版本开始发生了一些重构,因此,如果您使用的是旧版本,则正确的代码如下:

    lena = scipy.lena()
    
  2. 使用numpy.testing包中的assert_equal()函数检查 Lena 数组的形状-这是可选的完整性检查测试:

    np.testing.assert_equal((LENA_X, LENA_Y), lena.shape)
    
  3. 使用repeat()函数调整 Lena 数组的大小。 我们在xy方向上给此函数一个调整大小的因子:

    resized = lena.repeat(yfactor, axis=0).repeat(xfactor, axis=1)
    
  4. 我们将在同一网格的两个子图中绘制 Lena 图像和调整大小后的图像。 使用以下代码在子图中绘制 Lena 数组:

    plt.subplot(211)
    plt.title("Lena")
    plt.axis("off")
    plt.imshow(lena)
    

    matplotlib subplot()函数创建一个子图。 此函数接受一个三位整数作为参数,其中第一位是行数,第二位是列数,最后一位是子图的索引,从 1 开始。imshow()函数显示图像。 最后,show()函数显示最终结果。

    将调整大小后的数组绘制在另一个子图中并显示它。 索引现在为 2:

    plt.subplot(212)
    plt.title("Resized")
    plt.axis("off")
    plt.imshow(resized)
    plt.show()
    

    以下屏幕截图显示了结果,以及原始图像(第一幅)和调整大小后的图像(第二幅):

    NumPy 秘籍中文第二版:二、高级索引和数组概念

    以下是本书代码包中resize_lena.py文件中该秘籍的完整代码:

    import scipy.misc
    import matplotlib.pyplot as plt
    import numpy as np
    
    # This script resizes the Lena image from Scipy.
    
    # Loads the Lena image into an array
    lena = scipy.misc.lena()
    
    #Lena's dimensions
    LENA_X = 512
    LENA_Y = 512
    
    #Check the shape of the Lena array
    np.testing.assert_equal((LENA_X, LENA_Y), lena.shape)
    
    # Set the resize factors
    yfactor = 2
    xfactor = 3
    
    # Resize the Lena array
    resized = lena.repeat(yfactor, axis=0).repeat(xfactor, axis=1)
    
    #Check the shape of the resized array
    np.testing.assert_equal((yfactor * LENA_Y, xfactor * LENA_Y), resized.shape)
    
    # Plot the Lena array
    plt.subplot(211)
    plt.title("Lena")
    plt.axis("off")
    plt.imshow(lena)
    
    #Plot the resized array
    plt.subplot(212)
    plt.title("Resized")
    plt.axis("off")
    plt.imshow(resized)
    plt.show()
    

工作原理

repeat()函数重复数组,在这种情况下,这会导致原始图像的大小改变。 subplot() matplotlib 函数创建一个子图。 imshow()函数显示图像。 最后,show()函数显示最终结果。

另见

  • 第 1 章“使用 IPython”中的“安装 matplotlib”
  • 本章中的“安装 SciPy”
  • 本章中的“安装 PIL”
  • 这个页面中介绍了repeat()函数。

创建视图和副本

了解何时处理共享数组视图以及何时具有数组数据的副本,这一点很重要。 例如,切片将创建一个视图。 这意味着,如果您将切片分配给变量,然后更改基础数组,则此变量的值将更改。 我们将根据著名的 Lena 图像创建一个数组,复制该数组,创建一个视图,最后修改视图。

准备

前提条件与先前的秘籍相同。

操作步骤

让我们创建 Lena 数组的副本和视图:

  1. 创建 Lena 数组的副本:

    acopy = lena.copy()
    
    
  2. 创建数组的视图:

    aview = lena.view()
    
    
  3. 使用flat迭代器将视图的所有值设置为0

    aview.flat = 0
    
    

    最终结果是只有一个图像(与副本相关的图像)显示了花花公子模型。 其他图像完全消失:

    NumPy 秘籍中文第二版:二、高级索引和数组概念

    以下是本教程的代码,显示了本书代码包中copy_view.py文件中数组视图和副本的行为:

    import scipy.misc
    import matplotlib.pyplot as plt
    
    lena = scipy.misc.lena()
    acopy = lena.copy()
    aview = lena.view()
    
    # Plot the Lena array
    plt.subplot(221)
    plt.imshow(lena)
    
    #Plot the copy
    plt.subplot(222)
    plt.imshow(acopy)
    
    #Plot the view
    plt.subplot(223)
    plt.imshow(aview)
    
    # Plot the view after changes
    aview.flat = 0
    plt.subplot(224)
    plt.imshow(aview)
    
    plt.show()
    

工作原理

如您所见,通过在程序结尾处更改视图,我们更改了原始 Lena 数组。 这样就产生了三张蓝色(如果您正在查看黑白图像,则为空白)图像-复制的数组不受影响。 重要的是要记住,视图不是只读的。

另见

  • NumPy view()函数的文档位于这里

翻转 Lena

我们将翻转 SciPy Lena 图像-当然,所有这些都是以科学的名义,或者至少是作为演示。 除了翻转图像,我们还将对其进行切片并对其应用遮罩。

操作步骤

步骤如下:

  1. 使用以下代码围绕垂直轴翻转 Lena 数组:

    plt.imshow(lena[:,::-1])
    
    
  2. 从图像中切出一部分并将其绘制出来。 在这一步中,我们将看一下 Lena 数组的形状。 该形状是表示数组大小的元组。 以下代码有效地选择了花花公子图片的左上象限:

    plt.imshow(lena[:lena.shape[0]/2,:lena.shape[1]/2])
    
    
  3. 通过在 Lena 数组中找到所有偶数的值,对图像应用遮罩(这对于演示目的来说是任意的)。 复制数组并将偶数值更改为 0。 这样会在图像上放置很多蓝点(如果您正在查看黑白图像,则会出现暗点):

    mask = lena % 2 == 0
    masked_lena = lena.copy()
    masked_lena[mask] = 0
    
    

    所有这些工作都会产生2 x 2的图像网格,如以下屏幕截图所示:

    NumPy 秘籍中文第二版:二、高级索引和数组概念

    这是本书代码包中flip_lena.py文件中此秘籍的完整代码:

    import scipy.misc
    import matplotlib.pyplot as plt
    
    # Load the Lena array
    lena = scipy.misc.lena()
    
    # Plot the Lena array
    plt.subplot(221)
    plt.title('Original')
    plt.axis('off')
    plt.imshow(lena)
    
    #Plot the flipped array
    plt.subplot(222)
    plt.title('Flipped')
    plt.axis('off')
    plt.imshow(lena[:,::-1])
    
    #Plot a slice array
    plt.subplot(223)
    plt.title('Sliced')
    plt.axis('off')
    plt.imshow(lena[:lena.shape[0]/2,:lena.shape[1]/2])
    
    # Apply a mask
    mask = lena % 2 == 0
    masked_lena = lena.copy()
    masked_lena[mask] = 0
    plt.subplot(224)
    plt.title('Masked')
    plt.axis('off')
    plt.imshow(masked_lena)
    
    plt.show()
    

另见

  • 第 1 章“使用 IPython”中的“安装 matplotlib”
  • 本章中的“安装 SciPy”
  • 本章中的“安装 PIL”

花式索引

在本教程中,我们将应用花式索引将 Lena 图像的对角线值设置为 0。这将沿着对角线绘制黑线并交叉,这不是因为图像有问题,而仅仅作为练习。 花式索引是不涉及整数或切片的索引; 这是正常的索引编制。

操作步骤

我们将从第一个对角线开始:

  1. 将第一个对角线的值设置为0

    要将对角线值设置为0,我们需要为xy值定义两个不同的范围:

    lena[range(xmax), range(ymax)] = 0
    
    
  2. 将另一个对角线的值设置为0

    要设置另一个对角线的值,我们需要一组不同的范围,但是原理保持不变:

    lena[range(xmax-1,-1,-1), range(ymax)] = 0
    
    

    最后,我们得到带有对角线标记的图像,如以下屏幕截图所示:

    NumPy 秘籍中文第二版:二、高级索引和数组概念

    以下是本书代码集中fancy.py文件中该秘籍的完整代码:

    import scipy.misc
    import matplotlib.pyplot as plt
    
    # This script demonstrates fancy indexing by setting values
    # on the diagonals to 0.
    
    # Load the Lena array
    lena = scipy.misc.lena()
    xmax = lena.shape[0]
    ymax = lena.shape[1]
    
    # Fancy indexing
    # Set values on diagonal to 0
    # x 0-xmax
    # y 0-ymax
    lena[range(xmax), range(ymax)] = 0
    
    # Set values on other diagonal to 0
    # x xmax-0
    # y 0-ymax
    lena[range(xmax-1,-1,-1), range(ymax)] = 0
    
    # Plot Lena with diagonal lines set to 0
    plt.imshow(lena)
    plt.show()
    

工作原理

我们为x值和y值定义了单独的范围。 这些范围用于索引 Lena 数组。 花式索引是基于内部 NumPy 迭代器对象执行的。 执行以下步骤:

  1. 创建迭代器对象。
  2. 迭代器对象绑定到数组。
  3. 数组元素通过迭代器访问。

另见

  • 花式索引的实现文档

位置列表索引

让我们使用ix_()函数来随机播放 Lena 图像。 此函数根据多个序列创建网格。

操作步骤

我们将从随机改组数组索引开始:

  1. 使用numpy.random模块的shuffle()函数创建随机索引数组:

    def shuffle_indices(size):
       arr = np.arange(size)
       np.random.shuffle(arr)
    
       return arr
    
  2. 绘制乱序的索引:

    plt.imshow(lena[np.ix_(xindices, yindices)])
    
    

    我们得到的是一张完全打乱的 Lena 图像,如以下屏幕截图所示:

    NumPy 秘籍中文第二版:二、高级索引和数组概念

    这是本书代码包中ix.py文件中秘籍的完整代码:

    import scipy.misc
    import matplotlib.pyplot as plt
    import numpy as np
    
    # Load the Lena array
    lena = scipy.misc.lena()
    xmax = lena.shape[0]
    ymax = lena.shape[1]
    
    def shuffle_indices(size):
       '''
       Shuffles an array with values 0 - size
       '''
       arr = np.arange(size)
       np.random.shuffle(arr)
    
       return arr
    
    xindices = shuffle_indices(xmax)
    np.testing.assert_equal(len(xindices), xmax)
    yindices = shuffle_indices(ymax)
    np.testing.assert_equal(len(yindices), ymax)
    
    # Plot Lena
    plt.imshow(lena[np.ix_(xindices, yindices)])
    plt.show()
    

另见

  • ix_()函数的文档页面

布尔值索引

布尔索引是基于布尔数组的索引 ,属于奇特索引的类别。

操作步骤

我们将这种索引技术应用于图像:

  1. 在对角线上带有点的图像。

    这在某种程度上类似于本章中的“花式索引”秘籍。 这次,我们在图像的对角线上选择模4

    def get_indices(size):
       arr = np.arange(size)
       return arr % 4 == 0
    

    然后,我们只需应用此选择并绘制点:

    lena1 = lena.copy() 
    xindices = get_indices(lena.shape[0])
    yindices = get_indices(lena.shape[1])
    lena1[xindices, yindices] = 0
    plt.subplot(211)
    plt.imshow(lena1)
    
  2. 在最大值的四分之一到四分之三之间选择数组值,并将它们设置为0

    lena2[(lena > lena.max()/4) & (lena < 3 * lena.max()/4)] = 0
    

    带有两个新图像的图看起来类似于以下屏幕截图所示:

    NumPy 秘籍中文第二版:二、高级索引和数组概念

    这是本书代码包中boolean_indexing.py文件中该秘籍的完整代码:

    import scipy.misc
    import matplotlib.pyplot as plt
    import numpy as np
    
    # Load the Lena array
    lena = scipy.misc.lena()
    
    def get_indices(size):
       arr = np.arange(size)
       return arr % 4 == 0
    
    # Plot Lena
    lena1 = lena.copy() 
    xindices = get_indices(lena.shape[0])
    yindices = get_indices(lena.shape[1])
    lena1[xindices, yindices] = 0
    plt.subplot(211)
    plt.imshow(lena1)
    
    lena2 = lena.copy() 
    # Between quarter and 3 quarters of the max value
    lena2[(lena > lena.max()/4) & (lena < 3 * lena.max()/4)] = 0
    plt.subplot(212)
    plt.imshow(lena2)
    
    plt.show()
    

工作原理

由于布尔值索引是一种花式索引,因此它的工作方式基本相同。 这意味着索引是在特殊的迭代器对象的帮助下发生的。

另见

  • “花式索引”

数独的步幅技巧

ndarray 类具有strides字段,它是一个元组,指示通过数组时要在每个维中步进的字节数。 让我们对将数独谜题拆分为3 x 3正方形的问题应用一些大步技巧。

注意

对数独的规则进行解释超出了本书的范围。 简而言之,数独谜题由3 x 3的正方形组成。 这些正方形均包含九个数字。 有关更多信息,请参见这里。

操作步骤

应用如下的跨步技巧:

  1. 让我们定义sudoku数组。 此数组充满了一个实际的已解决的数独难题的内容:

    sudoku = np.array([
        [2, 8, 7, 1, 6, 5, 9, 4, 3],
        [9, 5, 4, 7, 3, 2, 1, 6, 8],
        [6, 1, 3, 8, 4, 9, 7, 5, 2],
        [8, 7, 9, 6, 5, 1, 2, 3, 4],
        [4, 2, 1, 3, 9, 8, 6, 7, 5],
        [3, 6, 5, 4, 2, 7, 8, 9, 1],
        [1, 9, 8, 5, 7, 3, 4, 2, 6],
        [5, 4, 2, 9, 1, 6, 3, 8, 7],
        [7, 3, 6, 2, 8, 4, 5, 1, 9]
        ])
    
  2. ndarrayitemsize字段为我们提供了数组中的字节数。 给定itemsize,请计算步幅:

    strides = sudoku.itemsize * np.array([27, 3, 9, 1])
    
  3. 现在我们可以使用np.lib.stride_tricks模块的as_strided()函数将拼图分解成正方形:

    squares = np.lib.stride_tricks.as_strided(sudoku, shape=shape, strides=strides)
    print(squares)
    

    该代码打印单独的数独正方形,如下所示:

    [[[[2 8 7]
        [9 5 4]
        [6 1 3]]
    
      [[1 6 5]
        [7 3 2]
        [8 4 9]]
    
      [[9 4 3]
        [1 6 8]
        [7 5 2]]]
    
     [[[8 7 9]
        [4 2 1]
        [3 6 5]]
    
      [[6 5 1]
        [3 9 8]
        [4 2 7]]
    
      [[2 3 4]
        [6 7 5]
        [8 9 1]]]
    
     [[[1 9 8]
        [5 4 2]
        [7 3 6]]
    
      [[5 7 3]
        [9 1 6]
        [2 8 4]]
    
      [[4 2 6]
        [3 8 7]
        [5 1 9]]]]
    

    以下是本书代码包中strides.py文件中此秘籍的完整源代码:

    import numpy as np
    
    sudoku = np.array([
       [2, 8, 7, 1, 6, 5, 9, 4, 3],
       [9, 5, 4, 7, 3, 2, 1, 6, 8],
       [6, 1, 3, 8, 4, 9, 7, 5, 2],
       [8, 7, 9, 6, 5, 1, 2, 3, 4],
       [4, 2, 1, 3, 9, 8, 6, 7, 5],
       [3, 6, 5, 4, 2, 7, 8, 9, 1],
       [1, 9, 8, 5, 7, 3, 4, 2, 6],
       [5, 4, 2, 9, 1, 6, 3, 8, 7],
       [7, 3, 6, 2, 8, 4, 5, 1, 9]
       ])
    
    shape = (3, 3, 3, 3)
    
    strides = sudoku.itemsize * np.array([27, 3, 9, 1])
    
    squares = np.lib.stride_tricks.as_strided(sudoku, shape=shape, strides=strides)
    print(squares)
    

工作原理

我们应用了跨步技巧,将数独谜题拆分为3 x 3的正方形。 步幅告诉我们通过数独数组时每一步需要跳过的字节数。

另见

  • strides属性的文档在这里

广播数组

在不知道的情况下,您可能已经广播了数组。 简而言之,即使操作数的形状不同,NumPy 也会尝试执行操作。 在此秘籍中,我们将一个数组和一个标量相乘。 标量被扩展为数组操作数的形状,然后执行乘法。 我们将下载一个音频文件并制作一个更安静的新版本。

操作步骤

让我们从读取 WAV 文件开始:

  1. 我们将使用标准的 Python 代码下载 Austin Powers 的音频文件。 SciPy 具有 WAV 文件模块,可让您加载声音数据或生成 WAV 文件。 如果已安装 SciPy,则我们应该已经有此模块。 read()函数返回data数组和采样率。 在此示例中,我们仅关心数据:

    sample_rate, data = scipy.io.wavfile.read(WAV_FILE)
    
  2. 使用 matplotlib 绘制原始 WAV 数据。 将子图命名为Original

    plt.subplot(2, 1, 1)
    plt.title("Original")
    plt.plot(data)
    
  3. 现在,我们将使用 NumPy 制作更安静的音频样本。 这只是通过与常量相乘来创建具有较小值的新数组的问题。 这就是广播魔术发生的地方。 最后,由于 WAV 格式,我们需要确保与原始数组具有相同的数据类型:

    newdata = data * 0.2
    newdata = newdata.astype(np.uint8)
    
  4. 可以将新数组写入新的 WAV 文件,如下所示:

    scipy.io.wavfile.write("quiet.wav",
        sample_rate, newdata)
    
  5. 使用 matplotlib 绘制新数据数组:

    plt.subplot(2, 1, 2)
    plt.title("Quiet")
    plt.plot(newdata)
    
    plt.show()
    

    结果是原始 WAV 文件数据和具有较小值的新数组的图,如以下屏幕快照所示:

    NumPy 秘籍中文第二版:二、高级索引和数组概念

    这是本书代码包中broadcasting.py文件中该秘籍的完整代码:

    import scipy.io.wavfile
    import matplotlib.pyplot as plt
    import urllib2
    import numpy as np
    
    # Download audio file
    response = urllib2.urlopen('http://www.thesoundarchive.com/austinpowers/smashingbaby.wav')
    print(response.info())
    WAV_FILE = 'smashingbaby.wav'
    filehandle = open(WAV_FILE, 'w')
    filehandle.write(response.read())
    filehandle.close()
    sample_rate, data = scipy.io.wavfile.read(WAV_FILE)
    print("Data type", data.dtype, "Shape", data.shape)
    
    # Plot values original audio
    plt.subplot(2, 1, 1)
    plt.title("Original")
    plt.plot(data)
    
    # Create quieter audio
    newdata = data * 0.2
    newdata = newdata.astype(np.uint8)
    print("Data type", newdata.dtype, "Shape", newdata.shape)
    
    # Save quieter audio file
    scipy.io.wavfile.write("quiet.wav",
        sample_rate, newdata)
    
    # Plot values quieter file
    plt.subplot(2, 1, 2)
    plt.title("Quiet")
    plt.plot(newdata)
    
    plt.show()
    

另见

以下链接提供了更多背景信息:文章来源地址https://www.toymoban.com/news/detail-413116.html

  • scipy.io.read()函数
  • scipy.io.write()函数
  • 在这个链接中解释了广播概念。

到了这里,关于NumPy 秘籍中文第二版:二、高级索引和数组概念的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【numpy基础】--数组索引

    数组索引是指在 numpy 数组中引用特定元素的方法。 numpy 的数组索引又称为 fancy indexing ,比其他编程语言的索引强大很多。 numpy的索引除了像其他语言一样选择一个元素,还可以间隔着选取多个元素,也可以用任意的顺序选取元素。 比如一维数组: 从上面的示例看出,通过

    2024年02月11日
    浏览(41)
  • 《算法竞赛入门经典(第二版)》学习笔记

    本文是《算法竞赛入门经典(第二版)》这本书中的学习总结,如有不足欢迎提出宝贵意见。 实验1 ~ 4 实验5 ~ 6 实验6与实验7的结果不必深究。 实验A1 实验A2 实验A3 实验A4 实验A5 实验B1 ~ B4 略. 习题1-1 习题1-2 习题1-3 习题1-4 习题1-5 习题1-6 习题1-7 问题1 int类型的最大值为:2

    2024年02月03日
    浏览(49)
  • 《python语言程序设计基础》(第二版)第二章课后习题参考答案

    第二章 Python程序实例解析 2.1 温度转换 2.2 汇率兑换 优化: 优化的主要改动: 将货币符号和金额分离出来,使代码更加清晰易读。 将条件判断改为根据货币符号进行判断,避免重复判断。 2.3 绘制彩色蟒蛇 2.4 等边三角形的绘制 代码一: 代码二: 2.5 叠加等边三角形的绘制

    2024年03月19日
    浏览(59)
  • 云计算发展编年史 1725-2023(第二版)

    目录 1725,诞生穿孔纸带 1846,诞生穿孔指令带 1890,诞生穿孔卡制表机

    2023年04月25日
    浏览(46)
  • 6款AI写作工具类网站推荐(第二版)

    我们搜集了一些AI写作工具,希望对你有帮助,不论是在提升工作效率方面,还是在了解最新的AI技术方面,帮助你提升工作效率。 Notion AI https://www.notion.so/product/ai NotionAi可以提供AI智能写作,还能检查代码、语法错误并进行智能改写,翻译,还可以快速提取总结文章重要内容

    2024年02月16日
    浏览(84)
  • 王道机试指南(第二版)——题目OJ链接

    王道机试指南(第二版)——题目OJ链接 方便大家跳转检验,侵删。 题目 地址 例题2.1 abc(清华大学复试上机题) 例题2.2 反序数(清华大学复试上机题) 例题2.3 对称平方数1(清华大学复试上机题) 习题2.1 与7无关的数(北京大学复试上机题) 习题2.2 百鸡问题(北京哈尔

    2024年01月17日
    浏览(47)
  • Flutter实战·第二版-第三章 基础组件笔记

    第三章:基础组件 3.1文本及样式 3.1.1 Text 3.1.2 TextStyle 3.1.3 TextSpan 3.1.4 DefaultTextStyle 3.1.5字体 先将文字资源打包到应用,然后再pubspec.yaml中指定位置 根目录/assets(fonts) 使用字体 Package中的字体 lib/fonts/Raleway-Medium.ttf 3.2按钮 3.2.1 ElevatedButton 3.2.2 TextButton 3.2.3 OutlinedButton 3.2.4 IconB

    2024年02月12日
    浏览(57)
  • 网络规划设计师教程第二版目录

    网络规划设计师教程第二版目录 第1章介绍网络的基础知识 第2章介绍网络互连与互联网 第3章介绍网络规划与设计的知识和方法 第4章介绍网络资源设备 第5章介绍网络安全技术 第6章介绍标准化和软件知识产权 第7章介绍网络系统分析与设计案例 第8章介绍网络规划与设计论文

    2024年02月07日
    浏览(52)
  • 《HeadFirst设计模式(第二版)》第十章代码——状态模式

             如下图所示,这是一个糖果机的状态机图,要求使用代码实现:  初始版本:         上面的代码很明显极其不利于本维护:比如要添加一个新的状态--每次投入25分钱都能有十分之一的概率获得两个糖果。         很明显上面的代码又要添加一堆if-else了,这种

    2024年02月12日
    浏览(41)
  • 《流畅的Python》第二版上市了,值得入手么?

    《Fluent Python》第一版在 2015 年出版,简体中文版《流畅的Python》在 2017 年出版。从那时起,它就成为了所有 Python 程序员的必读之书。如果一份面向中高级 Python 开发者的书单里不包含这本书,那这份书单肯定不合格! 《Fluent Python》第二版在 2022 年出版,最近,简体中文版《

    2024年02月01日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包