paddle实现波士顿房价预测任务

这篇具有很好参考价值的文章主要介绍了paddle实现波士顿房价预测任务。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

要点:

  • 参考官方案例

飞桨PaddlePaddle-源于产业实践的开源深度学习平台


1 加载飞桨框架的相关类库

#加载飞桨、NumPy和相关类库
import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import numpy as np
import os
import random

飞桨支持两种深度学习建模编写方式,更方便调试的动态图模式和性能更好并便于部署的静态图模式。

  • 动态图模式(命令式编程范式,类比Python):解析式的执行方式。用户无需预先定义完整的网络结构,每写一行网络代码,即可同时获得计算结果;
  • 静态图模式(声明式编程范式,类比C++):先编译后执行的方式。用户需预先定义完整的网络结构,再对网络结构进行编译优化后,才能执行获得计算结果。

飞桨框架2.0及之后的版本,默认使用动态图模式进行编码,同时提供了完备的动转静支持,开发者仅需添加一个装饰器( to_static ),飞桨会自动将动态图的程序转换为静态图的program,并使用该program训练并可保存静态模型以实现推理部署。

2.1 数据处理

数据处理的代码不依赖框架实现,与使用Python构建房价预测任务的代码相同

def load_data():
    # 从文件导入数据
    datafile = './work/housing.data'
    data = np.fromfile(datafile, sep=' ', dtype=np.float32)

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
                      'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算train数据集的最大值,最小值,平均值
    maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \
                                 training_data.sum(axis=0) / training_data.shape[0]
    
    # 记录数据的归一化参数,在预测时对数据做归一化
    global max_values
    global min_values
    global avg_values
    max_values = maximums
    min_values = minimums
    avg_values = avgs

    # 对数据进行归一化处理
    for i in range(feature_num):
        data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data

验证代码:

# 验证数据集读取程序的正确性
training_data, test_data = load_data()
print(training_data.shape)
print(training_data[1,:])

2.2 模型设计

模型定义的实质是定义线性回归的网络结构,飞桨建议通过创建Python类的方式完成模型网络的定义,该类需要继承paddle.nn.Layer父类,并且在类中定义init函数和forward函数。forward函数是框架指定实现前向计算逻辑的函数,程序在调用模型实例时会自动执行,forward函数中使用的网络层需要在init函数中声明。

  • 定义init函数:在类的初始化函数中声明每一层网络的实现函数。在房价预测任务中,只需要定义一层全连接层,模型结构和《使用Python和NumPy构建神经网络模型》章节保持一致;
  • 定义forward函数:构建神经网络结构,实现前向计算过程,并返回预测结果,在本任务中返回的是房价预测结果。
class Regressor(paddle.nn.Layer):

    # self代表类的实例自身
    def __init__(self):
        # 初始化父类中的一些参数
        super(Regressor, self).__init__()
        
        # 定义一层全连接层,输入维度是13,输出维度是1
        self.fc = Linear(in_features=13, out_features=1)
    
    # 网络的前向计算
    def forward(self, inputs):
        x = self.fc(inputs)
        return x

2.3 训练配置

训练配置过程如 图2 所示:

  • 声明定义好的回归模型实例为Regressor,并将模型的状态设置为train
  • 使用load_data函数加载训练数据和测试数据;
  • 设置优化算法和学习率,优化算法采用随机梯度下降SGD,学习率设置为0.01。
# 声明定义好的线性回归模型
model = Regressor()
# 开启模型训练模式
model.train()
# 加载数据
training_data, test_data = load_data()
# 定义优化算法,使用随机梯度下降SGD
# 学习率设置为0.01
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

说明:

模型实例有两种状态:训练状态.train()和预测状态.eval()。训练时要执行正向计算和反向传播梯度两个过程,而预测时只需要执行正向计算,为模型指定运行状态,有两点原因:

  1. 部分高级的算子在两个状态执行的逻辑不同,如:Dropout和BatchNorm(在后续的“计算机视觉”章节会详细介绍);
  2. 从性能和存储空间的考虑,预测状态时更节省内存(无需记录反向梯度),性能更好。

2.4 训练过程

训练过程采用二层循环嵌套方式:

  • 内层循环: 负责整个数据集的一次遍历,采用分批次方式(batch)。假设数据集样本数量为1000,一个批次有10个样本,则遍历一次数据集的批次数量是1000/10=100,即内层循环需要执行100次。

  for iter_id, mini_batch in enumerate(mini_batches):

外层循环: 定义遍历数据集的次数,通过参数EPOCH_NUM设置。

  for epoch_id in range(EPOCH_NUM):

说明:

batch的取值会影响模型训练效果,batch过大,会增大内存消耗和计算时间,且训练效果并不会明显提升(每次参数只向梯度反方向移动一小步,因此方向没必要特别精确);batch过小,每个batch的样本数据没有统计意义,计算的梯度方向可能偏差较大。由于房价预测模型的训练数据集较小,因此将batch设置为10。

每次内层循环都需要执行如 图3 所示的步骤,计算过程与使用Python编写模型完全一致。

  • 数据准备:将一个批次的数据先转换成nparray格式,再转换成Tensor格式;
  • 前向计算:将一个批次的样本数据灌入网络中,计算输出结果;
  • 计算损失函数:以前向计算结果和真实房价作为输入,通过损失函数square_error_cost API计算出损失函数值(Loss)。
  • 反向传播:执行梯度反向传播backward函数,即从后到前逐层计算每一层的梯度,并根据设置的优化算法更新参数(opt.step函数)。
EPOCH_NUM = 10   # 设置外层循环次数
BATCH_SIZE = 10  # 设置batch大小

# 定义外层循环
for epoch_id in range(EPOCH_NUM):
    # 在每轮迭代开始之前,将训练数据的顺序随机的打乱
    np.random.shuffle(training_data)
    # 将训练数据进行拆分,每个batch包含10条数据
    mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
    # 定义内层循环
    for iter_id, mini_batch in enumerate(mini_batches):
        x = np.array(mini_batch[:, :-1]) # 获得当前批次训练数据
        y = np.array(mini_batch[:, -1:]) # 获得当前批次训练标签(真实房价)
        # 将numpy数据转为飞桨动态图tensor的格式
        house_features = paddle.to_tensor(x)
        prices = paddle.to_tensor(y)
        
        # 前向计算
        predicts = model(house_features)
        
        # 计算损失
        loss = F.square_error_cost(predicts, label=prices)
        avg_loss = paddle.mean(loss)
        if iter_id%20==0:
            print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))
        
        # 反向传播,计算每层参数的梯度值
        avg_loss.backward()
        # 更新参数,根据设置好的学习率迭代一步
        opt.step()
        # 清空梯度变量,以备下一轮计算
        opt.clear_grad()

2.5 保存并测试模型

2.5.1 保存模型

使用paddle.save API将模型当前的参数数据 model.state_dict() 保存到文件中,用于模型预测或校验的程序调用。

# 保存模型参数,文件名为LR_model.pdparams
paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中")

分别保存模型和参数:

model_path = 'crnn'
ocr.save_inference_model(model_path)

params_path = 'crnn_params'
paddle.fluid.io.save_params(ocr.exe, params_path, ocr.exe.get_inference_program())

2.5.2 测试模型

下面选择一条数据样本,测试下模型的预测效果。测试过程和在应用场景中使用模型的过程一致,主要可分成如下三个步骤:

  1. 配置模型预测的机器资源。本案例默认使用本机,因此无需写代码指定。
  2. 将训练好的模型参数加载到模型实例中。由两个语句完成,第一句是从文件中读取模型参数;第二句是将参数内容加载到模型。加载完毕后,需要将模型的状态调整为eval()(校验)。上文中提到,训练状态的模型需要同时支持前向计算和反向传导梯度,模型的实现较为臃肿,而校验和预测状态的模型只需要支持前向计算,模型的实现更加简单,性能更好。
  3. 将待预测的样本特征输入到模型中,打印输出的预测结果。

通过load_one_example函数实现从数据集中抽一条样本作为测试样本,具体实现代码如下所示。文章来源地址https://www.toymoban.com/news/detail-413322.html

def load_one_example():
    # 从上边已加载的测试集中,随机选择一条作为测试数据
    idx = np.random.randint(0, test_data.shape[0])
    idx = -10
    one_data, label = test_data[idx, :-1], test_data[idx, -1]
    # 修改该条数据shape为[1,13]
    one_data =  one_data.reshape([1,-1])

    return one_data, label
# 参数为保存模型参数的文件地址
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict)
model.eval()

# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式 
one_data = paddle.to_tensor(one_data)
predict = model(one_data)

# 对结果做反归一化处理
predict = predict * (max_values[-1] - min_values[-1]) + avg_values[-1]
# 对label数据做反归一化处理
label = label * (max_values[-1] - min_values[-1]) + avg_values[-1]

print("Inference result is {}, the corresponding label is {}".format(predict.numpy(), label))

到了这里,关于paddle实现波士顿房价预测任务的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 实验 09 线性回归与波士顿房价预测

    掌握机器学习的基本概念 掌握线性回归的实现过程 应用LinearRegression实现回归预测 知道回归算法的评估标准及其公式 知道过拟合与欠拟合的原因以及解决方法 Jupter Notebook 人们在生活中经常遇到分类与预测的问题,目标变量可能受多个因素影响,根据相关系数可以判断影响因

    2024年02月11日
    浏览(40)
  • 使用线性回归构建波士顿房价预测模型

    波士顿房价数据集统计了波士顿地区506套房屋的特征以及它们的成交价格,这些特征包括周边犯罪率、房间数量、房屋是否靠河、交通便利性、空气质量、房产税率、社区师生比例(即教育水平)、周边低收入人口比例等 。我们的任务是根据上述数据集建立模型,能够预测房

    2023年04月14日
    浏览(72)
  • 机器学习 波士顿房价预测 Boston Housing

    目录 一:前言 二:模型预测(KNN算法) 三:回归模型预测比对 波士顿房价 是机器学习中很常用的一个 解决回归问题 的数据集 数据统计于1978年,包括506个房价样本,每个样本包括波士顿不同郊区房屋的13种特征信息, 比如:住宅房间数、城镇教师和学生比例等 标签值是每栋

    2024年02月03日
    浏览(46)
  • 机器学习之利用线性回归预测波士顿房价和可视化分析影响房价因素实战(python实现 附源码 超详细)

    数据集和源码请点赞关注收藏后评论区留下QQ邮箱或者私信 线性回归是利用最小二乘函数对一个或多个因变量之间关系进行建模的一种回归分析,这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个变量的称为一元回归,大于一个变量的情况叫做多元回归。

    2024年01月21日
    浏览(51)
  • 机器学习(三):基于线性回归对波士顿房价预测

    ✍ 作者简介: i阿极 ,CSDN Python领域新星创作者, 专注于分享python领域知识。 ✍ 本文录入于《机器学习案例》 ,本专栏精选了经典的机器学习算法进行讲解,针对大学生、初级数据分析工程师精心打造ÿ

    2023年04月25日
    浏览(52)
  • 计算机视觉学习笔记(二)---传统神经网络之波士顿房价预测

      本文承接pytorch学习笔记(一),以波士顿房价预测为例演示利用pytorch搭建一个简单的传统神经网络   数据集为波士顿房价数据,预测目标为MEDV(标签),其余变量均为特征。由于是csv格式可以直接采用pandas包下的read_csv读取   观察到在输入的数据中,有的特征普遍

    2024年02月04日
    浏览(49)
  • 机器学习---使用 TensorFlow 构建神经网络模型预测波士顿房价和鸢尾花数据集分类

    1. 预测波士顿房价 1.1 导包 最后一行设置了TensorFlow日志的详细程度: tf.logging.DEBUG :最详细的日志级别,用于记录调试信息。 tf.logging.INFO :用于记录一般的信息性消息,比如训练过程中的指标和进度。 tf.logging.WARN :用于记录警告消息,表示可能存在潜在问题,但不会导致

    2024年02月08日
    浏览(47)
  • 多元线性回归的python代码实现(基于sklearn的波士顿房价boston数据集为例)

    基于sklearn自带数据集波士顿房价数据集进行多元线性回归算法代码实现,其数据集包括13个特征向量,共计506个样本集。 本文代码实现步骤如下: 1. 获取数据集 2. 数据集切分,老规矩,80%训练,20%测试 3. 数据预处理(本用例尝试过归一化处理,但发现效果不好,不是每一个

    2024年02月06日
    浏览(51)
  • 基于回归分析的波士顿房价分析

    项目实现步骤: 1.项目结构 2.处理数据 3.处理绘图 4.对数据进行分析 5.结果展示 一.项目结构 二.处理数据 使用sklearn的datasets时,对应的波士顿房价数据已经被“移除”,在获取数据时,会出现 ,此时,在该提示的下方会有相关的解决方法 不建议使用提供的方法,对应方法的

    2024年02月09日
    浏览(39)
  • 波士顿房价数据集怎么不见了?

     做线性回归的同学大概率会用到一个数据集,即波士顿房价数据集,然而当你从sklearn下载该数据集时,你会惊讶地发现居然下载不了了!!!起初我以为是什么别的原因导致数据集可能被收回了,结果当我看到一篇文章就感觉,算了不做评价,参见这篇文章 消失的波士顿

    2024年02月05日
    浏览(69)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包