selenium+opencv实现模拟登陆(滑块验证码)

这篇具有很好参考价值的文章主要介绍了selenium+opencv实现模拟登陆(滑块验证码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

很多网站登录登陆时都要用到滑块验证码,在某些场景例如使用爬虫爬取信息时常常受到阻碍,想着用opencv的模板匹配试试能不能实现模拟登陆。本来觉得网上资料多应该还蛮容易,但实际上手还是搞了蛮久,在这里记录一下整个流程,网站无所谓主要是要有滑动验证码:

selenium+opencv实现模拟登陆(滑块验证码)

环境

python 3.9, selenium和Opencv相关依赖,用于抓取图片的requests包,具体安装这里不多讲了,其中selenium用的火狐版本。

selenium登录网站

整体流程就是这个样子:访问网站->点击登录->输入账号密码->搞定滑块验证->登录网站,其中最大的难点是滑块验证码,但在此之前我们当然要先让selenium自动打开网站把账号密码输好,我们通过find_element()方法定位输入框之后执行操作,元素的各个属性F12就可以找到:

selenium+opencv实现模拟登陆(滑块验证码)

代码如下:

options = webdriver.FirefoxOptions()
driver = webdriver.Firefox(options=options)
driver.get('网址')
driver.find_element("link text", "登录").click()
name = driver.find_element("id", "name-input")
name.send_keys("账号######") # 输入账号
pw = driver.find_element("id", "password-input")
pw.send_keys("密码#########") # 输入密码
driver.find_element("id", "submit").click() # 提交

requests抓取验证码图片


为了做后续处理我们需要把滑块验证码相关图片抓到本地,网上关于滑块验证码这块很多都是用原图和有缺口的图对比来确定缺口位置的,但是我并没有找到原图,这里用到的是有缺口的背景图和滑块图,如下:

滑块图: 

selenium+opencv实现模拟登陆(滑块验证码)

 有缺口的背景图:

selenium+opencv实现模拟登陆(滑块验证码)


这里爬图是selenium定位之后用requests包爬的,注意验证码和登陆界面不在一个iframe里,selenium记得切到对应iframe才能定位到图片,代码如下:

driver.switch_to.frame('tcaptcha_iframe')
 # 切换iframe
img = driver.find_element("id", "slideBg").get_attribute('src')
headers = {
    'Accept': "application/json, text/plain, */*",
    'User-Agent': "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.181 Safari/537.36"
} # 请求头
r = requests.get(img, headers=headers)
with open('img.png', 'wb') as f:
    f.write(r.content)
block = driver.find_element("id", "slideBlock").get_attribute('src')
r = requests.get(block, headers=headers)
with open('block.png', 'wb') as f:
    f.write(r.content)

 OpenCV识别缺口位置


接下来就是重点,如何确定缺口位置来定位滑动验证码该往哪滑。这里主要用到OpenCV的模板匹配。 首先对滑块也就是稍后匹配时用到的模板进行处理,这里主要就是把形状轮廓提取出来然后去掉多余的东西,先把原图变成灰度图:

tpl_gray = cv2.cvtColor(tpl, cv2.COLOR_BGR2GRAY)

selenium+opencv实现模拟登陆(滑块验证码)


可以看到边缘有一圈阴影部分,我们需要把周围这圈去掉,遍历找到黑色像素点把它变成和周围一样。

width, height = tpl_gray.shape
    for h in range(height):
        for w in range(width):
            if tpl_gray[w, h] == 0:
                tpl_gray[w, h] = 96

 处理后变成了这样,然后把中间主体部分涂黑,也就是将图片二值化。

binary = cv2.inRange(tpl_gray, 96, 96)  # 二值化
kernel = np.ones((8, 8), np.uint8)
template = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel) # 去白色噪点

 处理完毕得到理想的模板图:

selenium+opencv实现模拟登陆(滑块验证码)

 接下来对带有缺口的背景图进行处理,这个过程稍微麻烦一点,不过思路还是比较清晰的,还是先转化成灰度图再二值化,这里有一个问题,不同验证码图片之间差距很大,有的颜色很显眼,有的却很清淡,比如下面这两差别太大了,这就导致在二值化的过程中很难有一个固定的参数。

selenium+opencv实现模拟登陆(滑块验证码)

selenium+opencv实现模拟登陆(滑块验证码)

 这里我根据图片的平均灰度值设定了几个区间,对不同区间的验证码图片传入不同参数进行二值化:

def avg_mean(img):
    mean_val, _, _, _ = cv2.mean(img)
    print("平均灰度:", mean_val)
    return mean_val

def match(img):
    gauss = cv2.GaussianBlur(img, [5, 5], 0)
    img_gray = cv2.cvtColor(gauss, cv2.COLOR_BGR2GRAY)
    cv2.imshow("111", img_gray)
    if avg_mean(img) > 140: # 二值化
        ret, target = cv2.threshold(img_gray, 105, 255, cv2.THRESH_BINARY)
    elif avg_mean(img) > 102:
        ret, target = cv2.threshold(img_gray, 95, 255, cv2.THRESH_BINARY) 
    else:
        ret, target = cv2.threshold(img_gray, 85, 255, cv2.THRESH_BINARY)

 处理过的结果大概像这样:

selenium+opencv实现模拟登陆(滑块验证码)

 效果还是不错的,清晰的凸显了缺口位置,最后把背景图和模板传入opencv的模板匹配方法,记录下匹配到的坐标即可。

result = cv2.matchTemplate(target, template, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
left_up = max_loc
print(left_up)
right_down = (left_up[0] + height, left_up[1] + width)
cv2.rectangle(img, left_up, right_down, (0, 0, 255), 2)
cv2.imshow('res', img)

 这里框出来看看效果:

selenium+opencv实现模拟登陆(滑块验证码)

 模拟拖动滑块

识别出位置之后就要算出滑块移动了多少距离,我们可以看到滑块初始状态距离边缘有26个像素:

selenium+opencv实现模拟登陆(滑块验证码)

 同时抓下来的图片相比在网页中放大了一倍,所以真实滑动距离是: 

(left_up - 26*2)/2

于是用selenium的actionchains模拟拖动滑块:

def drag_block(l):
    drag = driver.find_element("id", "tcaptcha_drag_button")
    ActionChains(driver).click_and_hold(on_element=drag).perform()
    ActionChains(driver).move_to_element_with_offset(to_element=drag, xoffset=l, yoffset=0).perform()
    ActionChains(driver).release().perform()

 这样整个流程就搞定了,理论上这样简单粗暴的自动拖过去在很多时候会不奏效,还需要模拟人手动拖动,不过因为我做测试的时候直接就成功了,所以没写下去,整体思路大概是加速减速停几秒或者中间触发几个mouse_up(),mouse_down()事件。

脚本示例:

下面是测试时用到的脚本,selenium部分和主函数,拿某个CTF靶场做的测试,仅供参考,根据实际网站不同肯定得改改:

import time
import requests

from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains

import block_loc


def drag_block(l):
    drag = driver.find_element("id", "tcaptcha_drag_button")
    ActionChains(driver).click_and_hold(on_element=drag).perform()
    ActionChains(driver).move_to_element_with_offset(to_element=drag, xoffset=l, yoffset=0).perform()
    ActionChains(driver).release().perform()


def login_in(username, password):
    headers = {
        'Accept': "application/json, text/plain, */*",
        'User-Agent': "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.181 Safari/537.36"
    }
    driver.get('网址')
    driver.find_element("link text", "登录").click()
    name = driver.find_element("id", "name-input")
    name.send_keys(username)
    pw = driver.find_element("id", "password-input")
    pw.send_keys(password)
    driver.find_element("id", "submit").click()
    time.sleep(2)
    driver.switch_to.frame('tcaptcha_iframe')
    img = driver.find_element("id", "slideBg").get_attribute('src')
    r = requests.get(img, headers=headers)
    with open('img.png', 'wb') as f:
        f.write(r.content)
    block = driver.find_element("id", "slideBlock").get_attribute('src')
    r = requests.get(block, headers=headers)
    with open('block.png', 'wb') as f:
        f.write(r.content)


if __name__ == '__main__':
    options = webdriver.FirefoxOptions()
    driver = webdriver.Firefox(options=options)
    user = "##########"
    pw = "############"
    login_in(user, pw)
    image = "img.png"
    tpl = "block.png"
    length = block_loc.match(image, tpl)
    print(length)
    drag_block(length)

 Opencv部分:文章来源地址https://www.toymoban.com/news/detail-413511.html

import cv2
import numpy as np


def avg_mean(img):
    mean_val, _, _, _ = cv2.mean(img)
    print("平均灰度:", mean_val)
    return mean_val


def match(image, temp):
    img = cv2.imread(image)
    tpl = cv2.imread(temp)
    tpl_gray = cv2.cvtColor(tpl, cv2.COLOR_BGR2GRAY)
    # cv2.imshow("111", tpl_gray)
    width, height = tpl_gray.shape
    for h in range(height):
        for w in range(width):
            if tpl_gray[w, h] == 0:
                tpl_gray[w, h] = 96
    binary = cv2.inRange(tpl_gray, 96, 96)
    kernel = np.ones((8, 8), np.uint8)
    template = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel)
    # cv2.imshow('tpl', template)
    print(img.shape)
    gauss = cv2.GaussianBlur(img, [5, 5], 0)
    img_gray = cv2.cvtColor(gauss, cv2.COLOR_BGR2GRAY)
    # cv2.imshow("111", img_gray)
    if avg_mean(img) > 140:
        ret, target = cv2.threshold(img_gray, 105, 255, cv2.THRESH_BINARY) # 二值化
    elif avg_mean(img) > 102:
        ret, target = cv2.threshold(img_gray, 95, 255, cv2.THRESH_BINARY)  # 二值化
    else:
        ret, target = cv2.threshold(img_gray, 80, 255, cv2.THRESH_BINARY)
    # cv2.imshow('target', target)
    result = cv2.matchTemplate(target, template, cv2.TM_CCOEFF_NORMED)
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
    left_up = max_loc
    print(left_up)
    right_down = (left_up[0] + height, left_up[1] + width)
    cv2.rectangle(img, left_up, right_down, (0, 0, 255), 2)
    # cv2.imshow('res', img)
    length = (left_up[0] - 26*2)/2
    return length

到了这里,关于selenium+opencv实现模拟登陆(滑块验证码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 用Selenium实现滑块验证码登录

    现在很多网站的登录,都采用了拖动图片滑块的验证码方式来进行验证登录,比如哔哩哔哩和京东等。在使用爬虫等自动化程序时,如何通过滑块验证,就成了需要解决的问题。 这里通过大名鼎鼎的ddddocr图片识别库,和模拟浏览器操作的selenium库来实现 安装浏览器driver 首先

    2024年01月22日
    浏览(41)
  • 微博模拟登陆的方法 + 图灵图像图片验证码识别平台 识别验证码(97%正确率)Python + Selenium+Chrome

    最近遇到一个问题,需要频繁切换账号登陆微博,但是需要识别微博的验证码,比较麻烦。而且因为需要24h不间断的操作,所以没法使用人工打码平台,而且打码平台也比较贵,延迟又高。最后找到了一个可以机器识别出来的,延迟只有0.1s,而且准确率超级高。 首先看一下

    2024年02月04日
    浏览(76)
  • python+selenium绕过滑块验证,实现自动登录

    实现taobao自动化登录,当用webdriver打开淘宝时,滑块验证一直失败,手动滑都会失败。因为淘宝会检测window.navigator.webdriver,控件检测到你是selenium进入,所以就会弹出滑块验证。只需要绕过检测就能实现自动登录 验证了两种方法可以跳过: 第一种是给浏览器加启动参数,开

    2024年02月12日
    浏览(51)
  • 爽,我终于实现了selenium图片滑块验证码!【附代码】

    因为种种原因没能实现愿景的目标,在这里记录一下中间结果,也算是一个收场吧。这篇文章主要是 用selenium解决滑块验证码的个别案列。 思路: 用selenium打开浏览器指定网站 将残缺块图片和背景图片下载到本地 对比两张图片的相似地方,计算要滑动的距离 规划路线,移动

    2024年02月04日
    浏览(46)
  • 爽,我终于实现了selenium图片滑块验证码【附代码】

    因为种种原因没能实现愿景的目标,在这里记录一下中间结果,也算是一个收场吧。这篇文章主要是 用selenium解决滑块验证码的个别案列。 思路: 用selenium打开浏览器指定网站 将残缺块图片和背景图片下载到本地 对比两张图片的相似地方,计算要滑动的距离 规划路线,移动

    2024年02月04日
    浏览(32)
  • 使用selenium驱动浏览器时携带cookie实现模拟登陆

    selenium可以帮助我们驱动浏览器打开网页,并进行一些特定的操作。但是现在越来越多的网站,也会识别selenium,并且限制了访问条件,比如:必须登录。 在selenium中,get_cookies()方法可以帮助我们获取cookie。这里以知乎为例演示一下使用。 这里用到的浏览器驱动对象为 unde

    2024年04月14日
    浏览(45)
  • Selenium图片滑块验证码

    因为种种原因没能实现愿景的目标,在这里记录一下中间结果,也算是一个收场吧。这篇文章主要是用selenium解决滑块验证码的个别案列。 思路: 用selenium打开浏览器指定网站 将残缺块图片和背景图片下载到本地 对比两张图片的相似地方,计算要滑动的距离 规划路线,移动

    2024年02月13日
    浏览(52)
  • 用selenium解决滑块验证码

    因为种种原因没能实现愿景的目标,在这里记录一下中间结果,也算是一个收场吧。这篇博客主要是用selenium解决滑块验证码的个别案列。 思路: 用selenium打开浏览器指定网站 将残缺块图片和背景图片下载到本地 对比两张图片的相似地方,计算要滑动的距离 规划路线,移动

    2024年02月01日
    浏览(46)
  • selenium处理各类滑块验证码

    这种只要用鼠标点击并移动指定距离就可以完成验证(x轴) 这种是点击滑块会弹出白色方块和暗灰色方块,只要将白色方块移动覆盖暗灰色方块便能通过,白色方块是一张图片,暗灰色方块是通过style样式设计的,我们可以根据它们之间style的left计算差异值从而得到滑块滑动

    2024年02月16日
    浏览(51)
  • python+selenium尝试处理滑块验证

     效果如图:   处理思路: 1.打开滑动验证页面,这个用selenium一步一步走过去 2.将滑动验证码的整个图片保存下来 3.对图片的像素点进行分析,发现拼图处像素特征如下:   1).阴影起点处rgb的第一个值为0   2).阴影处的rgb三个值相加大部分小于某个临界值(minPix=400)   3).拼图阴影大

    2024年02月15日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包