实时分布式低延迟OLAP数据库Apache Pinot探索实操

这篇具有很好参考价值的文章主要介绍了实时分布式低延迟OLAP数据库Apache Pinot探索实操。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

@

目录
  • 概述
    • 定义
    • 特性
    • 何时使用
  • 部署
    • Local安装
      • 快速启动
      • 手动设置集群
    • Docker安装
      • 快速启动
      • 手动启动集群
      • Docker Compose
  • 实操
    • 批导入数据
    • 流式导入数据

概述

定义

Apache Pinot 官网地址 https://pinot.apache.org/ 最新版本0.12.1

Apache Pinot 官网文档地址 https://docs.pinot.apache.org/

Apache Pinot 源码地址 https://github.com/apache/pinot

Apache Pinot是一个实时分布式OLAP数据存储,专为低延迟高吞吐量分析而构建,非常适合面向用户的分析的工作。Pinot 携手 Kafka 和 Presto 提供面向用户的分析。

Pinot可直接从流数据源(如Apache Kafka和Amazon Kinesis)中摄取数据,基于实时事件实现即时的查询。还可以从批处理数据源中摄取数据,如Hadoop HDFS、Amazon S3、Azure ADLS和谷歌云存储。核心采用列式存储,基于智能索引和预聚合技术实现低延迟;还提供内部仪表板、异常检测和临时数据探索。

实时分布式低延迟OLAP数据库Apache Pinot探索实操

特性

Pinot最初是在LinkedIn上构建的,用于支持丰富的交互式实时分析应用程序,如Who Viewed Profile, Company Analytics, Talent Insights等等。

  • 面向列:面向列的存储技术,并提供各种压缩方案。
  • 可插索引:可插拔的索引技术,支持排序索引、位图索引、倒排索引。
  • 查询优化:能够基于查询和段元数据优化查询/执行计划。
  • 来自Kafka、Kinesis等流的近实时摄取,以及来自Hadoop、S3、Azure、GCS等源的批量摄取
  • 类似sql的语言,支持对数据的选择、聚合、过滤、分组、排序和不同的查询。
  • 支持多值字段
  • 水平可扩展和容错

何时使用

Pinot旨在为大型数据集提供低延迟查询;为了实现这一性能,Pinot以列式格式存储数据,并添加额外的索引来执行快速过滤、聚合和分组。原始数据被分解成小的数据碎片,每个碎片被转换成一个称为段的单位。一个或多个段一起形成一个表,这是使用SQL/PQL查询Pinot的逻辑容器。Pinot非常适合查询具有许多维度和指标的时间序列数据。Pinot不是数据库的替代品,也即是它不能用作真值存储的来源,不能改变数据。虽然Pinot支持文本搜索,但它并不能取代搜索引擎。此外,默认情况下,Pinot查询不能跨多个表,但可以使用Trino-Pinot连接器或preto-pinot连接器来实现表连接和其他功能。主要使用场景如下:

  • 面向用户分析的产品
  • 用于业务指标的实时仪表板
  • 异常检测

部署

Local安装

快速启动

# 下载Pinot发行版最新版本0.12.1,需要JDK11或以上版本,JDK16除外
PINOT_VERSION=0.12.1 
wget https://downloads.apache.org/pinot/apache-pinot-$PINOT_VERSION/apache-pinot-$PINOT_VERSION-bin.tar.gz
# 解压文件
tar -zxvf apache-pinot-$PINOT_VERSION-bin.tar.gz
# 导航到包含启动程序脚本的目录:
cd apache-pinot-$PINOT_VERSION-bin
# 有两种方法启动:快速启动或手动设置集群。
# Pinot附带快速启动命令,可以在同一进程中启动Pinot组件实例,并导入预构建的数据集。下面的快速启动命令启动预装棒球数据集的Pinot,所有可用的快速入门命令列表请参见快速入门示例。
./bin/pinot-admin.sh QuickStart -type batch

手动设置集群

# 如果想处理更大的数据集(超过几兆字节),可以单独启动Pinot各个组件,并将它们扩展到多个实例
# 启动Zookeeper
./bin/pinot-admin.sh StartZookeeper \
  -zkPort 2191
# 启动Pinot Controller
export JAVA_OPTS="-Xms4G -Xmx8G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-controller.log"
./bin/pinot-admin.sh StartController \
    -zkAddress localhost:2191 \
    -controllerPort 9000
# 启动Pinot Broker
export JAVA_OPTS="-Xms4G -Xmx4G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-broker.log"
./bin/pinot-admin.sh StartBroker \
    -zkAddress localhost:2191
# 启动Pinot Server
export JAVA_OPTS="-Xms4G -Xmx16G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-server.log"
./bin/pinot-admin.sh StartServer \
    -zkAddress localhost:2191
# 启动Kafka
./bin/pinot-admin.sh  StartKafka \ 
  -zkAddress=localhost:2191/kafka \
  -port 19092

Docker安装

快速启动

# 启动Apache Zookeeper、Pinot Controller、Pinot Broker和Pinot Server。创建baseballStats表启动一个独立的数据摄取作业,为baseballStats表的给定CSV数据文件构建一个段,并将该段推到Pinot Controller。向Pinot发出示例查询
docker run \
    -p 9000:9000 \
    apachepinot/pinot:0.12.1 QuickStart \
    -type batch

启动完后生成示例数据,可以通过查询控制台进行SQL编辑查询,显示查询结果并可以导出EXCEL和CSV格式文件。

实时分布式低延迟OLAP数据库Apache Pinot探索实操

官方还提供多种多种数据类型格式样例数据,比如JSON

# 启动Apache Zookeeper、Pinot Controller、Pinot Broker和Pinot Server。创建githubEvents表启动一个独立的数据摄取作业,为githubEvents表的给定JSON数据文件构建一个段,并将该段推到Pinot Controller。向Pinot发出示例查询
docker run \
    -p 9000:9000 \
    apachepinot/pinot:0.12.1 QuickStart \
    -type batch_json_index

实时分布式低延迟OLAP数据库Apache Pinot探索实操

还提供其他流式、Upsert、混合的类型,各位有兴趣可以详细查看

docker run \
    -p 9000:9000 \
    apachepinot/pinot:0.12.1 QuickStart \
    -type batch_complex_type
docker run \
    -p 9000:9000 \
    apachepinot/pinot:0.12.1 QuickStart \
    -type stream
docker run \
    -p 9000:9000 \
    apachepinot/pinot:0.12.1 QuickStart \
    -type realtime_minion 
docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type stream_complex_type
docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type upsert
docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type upsert_json_index
docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type hybrid
docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type join

手动启动集群

# 创建网络,在docker中创建一个隔离的桥接网络
docker network create -d bridge pinot-demo
# 启动 Zookeeper,以daemon模式启动Zookeeper。这是一个单节点zookeeper设置。Zookeeper是Pinot的中央元数据存储,应该设置为用于生产的复制。更多信息请参见运行复制的Zookeeper。
docker run \
    --network=pinot-demo \
    --name pinot-zookeeper \
    --restart always \
    -p 2181:2181 \
    -d zookeeper:3.5.6
# 启动 Pinot Controller,在守护进程中启动Pinot Controller并连接到Zookeeper。下面的命令需要一个4GB的内存容器。如果您的机器没有足够的资源,那么就调整- xms和xmx。
docker run --rm -ti \
    --network=pinot-demo \
    --name pinot-controller \
    -p 9000:9000 \
    -e JAVA_OPTS="-Dplugins.dir=/opt/pinot/plugins -Xms1G -Xmx4G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-controller.log" \
    -d ${PINOT_IMAGE} StartController \
    -zkAddress pinot-zookeeper:2181
# 启动 Pinot Broker,在守护进程中启动Pinot Broker并连接到Zookeeper。下面的命令需要一个4GB的内存容器。如果您的机器没有足够的资源,那么就调整- xms和xmx。
docker run --rm -ti \
    --network=pinot-demo \
    --name pinot-broker \
    -p 8099:8099 \
    -e JAVA_OPTS="-Dplugins.dir=/opt/pinot/plugins -Xms4G -Xmx4G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-broker.log" \
    -d ${PINOT_IMAGE} StartBroker \
    -zkAddress pinot-zookeeper:2181
# 启动 Pinot Server,在守护进程中启动Pinot服务器并连接到Zookeeper。下面的命令需要一个16GB的内存容器。如果您的机器没有足够的资源,那么就调整- xms和xmx。
docker run --rm -ti \
    --network=pinot-demo \
    --name pinot-server \
    -p 8098:8098 \
    -e JAVA_OPTS="-Dplugins.dir=/opt/pinot/plugins -Xms4G -Xmx16G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-server.log" \
    -d ${PINOT_IMAGE} StartServer \
    -zkAddress pinot-zookeeper:2181
# 启动 Kafka,你也可以选择启动Kafka来设置实时流。这会在端口9092上打开Kafka代理。
docker run --rm -ti \
    --network pinot-demo --name=kafka \
    -e KAFKA_ZOOKEEPER_CONNECT=pinot-zookeeper:2181/kafka \
    -e KAFKA_BROKER_ID=0 \
    -e KAFKA_ADVERTISED_HOST_NAME=kafka \
    -p 9092:9092 \
    -d bitnami/kafka:latest
# 查看运行容器
docker container ls -a

Docker Compose

创建docker-compose.yml文件内容如下

version: '3.7'
services:
  pinot-zookeeper:
    image: zookeeper:3.5.6
    container_name: pinot-zookeeper
    ports:
      - "2181:2181"
    environment:
      ZOOKEEPER_CLIENT_PORT: 2181
      ZOOKEEPER_TICK_TIME: 2000
  pinot-controller:
    image: apachepinot/pinot:0.12.1
    command: "StartController -zkAddress pinot-zookeeper:2181"
    container_name: pinot-controller
    restart: unless-stopped
    ports:
      - "9000:9000"
    environment:
      JAVA_OPTS: "-Dplugins.dir=/opt/pinot/plugins -Xms1G -Xmx4G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-controller.log"
    depends_on:
      - pinot-zookeeper
  pinot-broker:
    image: apachepinot/pinot:0.12.1
    command: "StartBroker -zkAddress pinot-zookeeper:2181"
    restart: unless-stopped
    container_name: "pinot-broker"
    ports:
      - "8099:8099"
    environment:
      JAVA_OPTS: "-Dplugins.dir=/opt/pinot/plugins -Xms4G -Xmx4G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-broker.log"
    depends_on:
      - pinot-controller
  pinot-server:
    image: apachepinot/pinot:0.12.1
    command: "StartServer -zkAddress pinot-zookeeper:2181"
    restart: unless-stopped
    container_name: "pinot-server"
    ports:
      - "8098:8098"
    environment:
      JAVA_OPTS: "-Dplugins.dir=/opt/pinot/plugins -Xms4G -Xmx16G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-server.log"
    depends_on:
      - pinot-broker

运行docker-compose命令启动所有组件

docker-compose --project-name pinot-demo up

访问9000端口管理端点,http://mypinot:9000/

实时分布式低延迟OLAP数据库Apache Pinot探索实操

实操

批导入数据

  • 准备数据
# 创建数据目录mkdir -p /tmp/pinot-quick-start/rawdata# 支持的文件格式有CSV、JSON、AVRO、PARQUET、THRIFT、ORC。创建一个/tmp/pinot-quick-start/rawdata/transcript.csv文件,内容如下studentID,firstName,lastName,gender,subject,score,timestampInEpoch200,Lucy,Smith,Female,Maths,3.8,1570863600000200,Lucy,Smith,Female,English,3.5,1571036400000201,Bob,King,Male,Maths,3.2,1571900400000202,Nick,Young,Male,Physics,3.6,1572418800000
  • 创建Schema:模式用于定义Pinot表的列和数据类型。模式的详细概述可以在schema中找到。简单地说,将列分为3种类型
列类型 描述
维度列 通常用于过滤器和分组by,用于对数据进行切片和切块
度量列 通常用于聚合,表示定量数据
时间 可选列,表示与每行关联的时间戳

例如,在上面数据中,studententid、firstName、lastName、gender、subject列是维度列,score列是度量列,timestampInEpoch是时间列。确定了维度、指标和时间列,使用下面的参考为数据创建一个schema,创建/tmp/pinot-quick-start/transcript-schema.json

{  "schemaName": "transcript",  "dimensionFieldSpecs": [    {      "name": "studentID",      "dataType": "INT"    },    {      "name": "firstName",      "dataType": "STRING"    },    {      "name": "lastName",      "dataType": "STRING"    },    {      "name": "gender",      "dataType": "STRING"    },    {      "name": "subject",      "dataType": "STRING"    }  ],  "metricFieldSpecs": [    {      "name": "score",      "dataType": "FLOAT"    }  ],  "dateTimeFieldSpecs": [{    "name": "timestampInEpoch",    "dataType": "LONG",    "format" : "1:MILLISECONDS:EPOCH",    "granularity": "1:MILLISECONDS"  }]}
  • 创建表配置:表配置用于定义与Pinot表相关的配置。该表的详细概述可以在表中找到。下面是上面CSV数据文件的表配置,创建表配置文件/tmp/pinot-quick-start/transcript-table-offline.json
{  "tableName": "transcript",  "segmentsConfig" : {    "timeColumnName": "timestampInEpoch",    "timeType": "MILLISECONDS",    "replication" : "1",    "schemaName" : "transcript"  },  "tableIndexConfig" : {    "invertedIndexColumns" : [],    "loadMode"  : "MMAP"  },  "tenants" : {    "broker":"DefaultTenant",    "server":"DefaultTenant"  },  "tableType":"OFFLINE",  "metadata": {}}
  • 上传表配置和Schema
# 前面是通过docker网络创建,确保可以访问controllerHost(manual-pinot-controller为可以访问主机名、容器、IP)和controllerPort端口即可docker run --rm -ti \    --network=pinot-demo \    -v /tmp/pinot-quick-start:/tmp/pinot-quick-start \    --name pinot-batch-table-creation \    apachepinot/pinot:0.12.1 AddTable \    -schemaFile /tmp/pinot-quick-start/transcript-schema.json \    -tableConfigFile /tmp/pinot-quick-start/transcript-table-offline.json \    -controllerHost manual-pinot-controller \    -controllerPort 9000 -exec  

可以通过检查Rest API中的表配置和模式,以确保它已成功上传。

实时分布式低延迟OLAP数据库Apache Pinot探索实操

  • 创建段:Pinot表的数据存储为Pinot段。段的详细概述可以在段中找到。为了生成一个段,首先需要创建一个作业规范yaml文件。JobSpec yaml文件包含有关数据格式、输入数据位置和pinot集群坐标的所有信息。创建/tmp/pinot-quick-start/docker-job-spec.yml文件,内容如下
executionFrameworkSpec:  name: 'standalone'  segmentGenerationJobRunnerClassName: 'org.apache.pinot.plugin.ingestion.batch.standalone.SegmentGenerationJobRunner'  segmentTarPushJobRunnerClassName: 'org.apache.pinot.plugin.ingestion.batch.standalone.SegmentTarPushJobRunner'  segmentUriPushJobRunnerClassName: 'org.apache.pinot.plugin.ingestion.batch.standalone.SegmentUriPushJobRunner'jobType: SegmentCreationAndTarPushinputDirURI: '/tmp/pinot-quick-start/rawdata/'includeFileNamePattern: 'glob:**/*.csv'outputDirURI: '/tmp/pinot-quick-start/segments/'overwriteOutput: truepinotFSSpecs:  - scheme: file    className: org.apache.pinot.spi.filesystem.LocalPinotFSrecordReaderSpec:  dataFormat: 'csv'  className: 'org.apache.pinot.plugin.inputformat.csv.CSVRecordReader'  configClassName: 'org.apache.pinot.plugin.inputformat.csv.CSVRecordReaderConfig'tableSpec:  tableName: 'transcript'  schemaURI: 'http://manual-pinot-controller:9000/tables/transcript/schema'  tableConfigURI: 'http://manual-pinot-controller:9000/tables/transcript'pinotClusterSpecs:  - controllerURI: 'http://manual-pinot-controller:9000'

使用以下命令生成一个段并上传

docker run --rm -ti \    --network=pinot-demo \    -v /tmp/pinot-quick-start:/tmp/pinot-quick-start \    --name pinot-data-ingestion-job \    apachepinot/pinot:0.12.1 LaunchDataIngestionJob \    -jobSpecFile /tmp/pinot-quick-start/docker-job-spec.yml

流式导入数据

  • 创建Kafka和主题
# 首先,需要设置一个流。Pinot为Kafka提供了开箱即用的实时摄取支持。在本地设置一个演示Kafka集群,并创建一个示例主题转录主题docker run --rm -ti \    --network pinot-demo --name=kafka \    -e KAFKA_ZOOKEEPER_CONNECT=pinot-zookeeper:2181/kafka \    -e ALLOW_PLAINTEXT_LISTENER=yes \    -e KAFKA_BROKER_ID=0 \    -e KAFKA_ADVERTISED_HOST_NAME=kafka \    -p 9092:9092 \    -d bitnami/kafka:latest          # 创建一个Kafka主题docker exec \  -t kafka \  /opt/bitnami/kafka/bin/kafka-topics.sh \  --bootstrap-server kafka:9092 \  --partitions=1 --replication-factor=1 \  --create --topic transcript-topic  

实时分布式低延迟OLAP数据库Apache Pinot探索实操

  • 创建表配置,创建/tmp/pinot-quick-start/transcript-table-realtime.json文件,内容如下
{  "tableName": "transcript",  "tableType": "REALTIME",  "segmentsConfig": {    "timeColumnName": "timestampInEpoch",    "timeType": "MILLISECONDS",    "schemaName": "transcript",    "replicasPerPartition": "1"  },  "tenants": {},  "tableIndexConfig": {    "loadMode": "MMAP",    "streamConfigs": {      "streamType": "kafka",      "stream.kafka.consumer.type": "lowlevel",      "stream.kafka.topic.name": "transcript-topic",      "stream.kafka.decoder.class.name": "org.apache.pinot.plugin.stream.kafka.KafkaJSONMessageDecoder",      "stream.kafka.consumer.factory.class.name": "org.apache.pinot.plugin.stream.kafka20.KafkaConsumerFactory",      "stream.kafka.broker.list": "kafka:9092",      "realtime.segment.flush.threshold.rows": "0",      "realtime.segment.flush.threshold.time": "24h",      "realtime.segment.flush.threshold.segment.size": "50M",      "stream.kafka.consumer.prop.auto.offset.reset": "smallest"    }  },  "metadata": {    "customConfigs": {}  }}
  • 上传Schema和表配置
docker run \    --network=pinot-demo \    -v /tmp/pinot-quick-start:/tmp/pinot-quick-start \    --name pinot-streaming-table-creation \    apachepinot/pinot:0.12.1 AddTable \    -schemaFile /tmp/pinot-quick-start/transcript-schema.json \    -tableConfigFile /tmp/pinot-quick-start/transcript-table-realtime.json \    -controllerHost pinot-controller \    -controllerPort 9000 \    -exec

实时分布式低延迟OLAP数据库Apache Pinot探索实操

  • 创建数据文件用于kafka生产者发送,/tmp/pinot-quick-start/rawdata/transcript.json,内容如下
{"studentID":205,"firstName":"Natalie","lastName":"Jones","gender":"Female","subject":"Maths","score":3.8,"timestampInEpoch":1571900400000}{"studentID":205,"firstName":"Natalie","lastName":"Jones","gender":"Female","subject":"History","score":3.5,"timestampInEpoch":1571900400000}{"studentID":207,"firstName":"Bob","lastName":"Lewis","gender":"Male","subject":"Maths","score":3.2,"timestampInEpoch":1571900400000}{"studentID":207,"firstName":"Bob","lastName":"Lewis","gender":"Male","subject":"Chemistry","score":3.6,"timestampInEpoch":1572418800000}{"studentID":209,"firstName":"Jane","lastName":"Doe","gender":"Female","subject":"Geography","score":3.8,"timestampInEpoch":1572505200000}{"studentID":209,"firstName":"Jane","lastName":"Doe","gender":"Female","subject":"English","score":3.5,"timestampInEpoch":1572505200000}{"studentID":209,"firstName":"Jane","lastName":"Doe","gender":"Female","subject":"Maths","score":3.2,"timestampInEpoch":1572678000000}{"studentID":209,"firstName":"Jane","lastName":"Doe","gender":"Female","subject":"Physics","score":3.6,"timestampInEpoch":1572678000000}{"studentID":211,"firstName":"John","lastName":"Doe","gender":"Male","subject":"Maths","score":3.8,"timestampInEpoch":1572678000000}{"studentID":211,"firstName":"John","lastName":"Doe","gender":"Male","subject":"English","score":3.5,"timestampInEpoch":1572678000000}{"studentID":211,"firstName":"John","lastName":"Doe","gender":"Male","subject":"History","score":3.2,"timestampInEpoch":1572854400000}{"studentID":212,"firstName":"Nick","lastName":"Young","gender":"Male","subject":"History","score":3.6,"timestampInEpoch":1572854400000}

将示例JSON推入Kafka主题,使用从Kafka下载的Kafka脚本

bin/kafka-console-producer.sh \    --bootstrap-server kafka:9092 \    --topic transcript-topic < /tmp/pinot-quick-start/rawdata/transcript.json

实时分布式低延迟OLAP数据库Apache Pinot探索实操文章来源地址https://www.toymoban.com/news/detail-413578.html

  • 本人博客网站IT小神 www.itxiaoshen.com

到了这里,关于实时分布式低延迟OLAP数据库Apache Pinot探索实操的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大数据分布式实时大数据处理框架Storm,入门到精通!

    介绍:Storm是一个分布式实时大数据处理框架,被业界称为实时版的Hadoop。 首先,Storm由Twitter开源,它解决了Hadoop MapReduce在处理实时数据方面的高延迟问题。Storm的设计目标是保证数据的实时处理,它可以在数据流入系统的同时进行处理,这与传统的先存储后处理的关系型数

    2024年01月23日
    浏览(53)
  • 分布式数据库架构

    对于mysql架构,一定会使用到读写分离,在此基础上有五种常见架构设计:一主一从或多从、主主复制、级联复制、主主与级联复制结合。 1.1、主从复制 这种架构设计是使用的最多的。在读写分离的基础上,会存在一台master作为写机,一个或多个slave作为读机。因为在实际的

    2024年02月10日
    浏览(50)
  • 【大数据】分布式数据库HBase

    目录 1.概述 1.1.前言 1.2.数据模型 1.3.列式存储的优势 2.实现原理 2.1.region 2.2.LSM树 2.3.完整读写过程 2.4.master的作用 本文式作者大数据系列专栏中的一篇文章,按照专栏来阅读,循序渐进能更好的理解,专栏地址: https://blog.csdn.net/joker_zjn/category_12631789.html?spm=1001.2014.3001.5482 当

    2024年04月27日
    浏览(47)
  • 分布式数据库HBase

    HBase是一个高可靠、高性能、 面向列 、可伸缩的分布式数据库,是谷歌BigTable的开源实现,主要用来存储非结构化和把结构化的松散数据。 HBase的目标是处理非常庞大的表,可以通过水平扩展的方式,利用 廉价计算机集群 处理由超过10亿行数据和数百万列元素组成的数据表。

    2024年02月09日
    浏览(57)
  • 分析型数据库:分布式分析型数据库

    分析型数据库的另外一个发展方向就是以分布式技术来代替MPP的并行计算,一方面分布式技术比MPP有更好的可扩展性,对底层的异构软硬件支持度更好,可以解决MPP数据库的几个关键架构问题。本文介绍分布式分析型数据库。 — 背景介绍— 目前在分布式分析型数据库领域,

    2023年04月14日
    浏览(61)
  • 分布式数据库-事务一致性

    version: v-2023060601 author: 路__ 分布式数据库的“强一致性”应该包含两个方面: serializability(串行) and linearizability(线性一致) ,上述图为“Highly Available Transactions: Virtues and Limitations”论文中对于一致性模型的介绍。图中箭头表示一致性模型之间的关系。对于异步网络上的分

    2024年02月08日
    浏览(53)
  • tim实践系列——分布式数据存储与动态数据库扩容

    前言: tim是去中心化分布式即时通讯引擎。不依赖于任何中心服务器,采用去中心化分布式架构,解决传统中心化通讯方式的问题,去中心化分布式架构的通讯引擎的各个节点之间相互连接,形成一个庞大的分布式网络。可以轻松地扩展服务规模,支持更多的用户和业务需求

    2024年02月02日
    浏览(50)
  • 聊聊分布式 SQL 数据库Doris(七)

    Doris的存储结构是类似LSM-Tree设计的,因此很多方面都是通用的,先阅读了解LSM相关的知识,再看Doris的底层存储与读取流程会清晰透彻很多,LSM基本知识如下: 原理:把各种数据先用log等形式组织在内存中(该数据结构称为MemTable,且有序);到达一定数据量后再批量merge写入磁

    2024年02月05日
    浏览(48)
  • 聊聊分布式 SQL 数据库Doris(四)

    FE层的架构都能在网上找到说明. 但BE层的架构模式、一致性保障、与FE层之间的请求逻辑,数据传输逻辑等,我个人暂时没有找到相应的博客说明这些的。当然这些是我个人在学习与使用Doris过程中,对内部交互逻辑与实现感兴趣才有这些疑问. 还好现在有GPT这类大模型,有了

    2024年02月05日
    浏览(58)
  • 聊聊分布式 SQL 数据库Doris(五)

    阅读 Doris SQL 原理解析,总结下Doris中SQL解析流程: 词法识别:解析原始SQL文本,拆分token 语法识别:将token转换成AST 单机逻辑查询计划:将AST经过一系列的优化(比如,谓词下推等)成查询计划,提高执行性能与效率。 分布式逻辑查询计划:根据分布式环境(数据分布信息

    2024年02月05日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包