【数据挖掘】-支持向量机(SVM)+代码实现

这篇具有很好参考价值的文章主要介绍了【数据挖掘】-支持向量机(SVM)+代码实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【数据挖掘】-支持向量机(SVM)+代码实现

🤵‍♂️ 个人主页:@Lingxw_w的个人主页

✍🏻作者简介:计算机科学与技术研究生在读
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+  

目录

1、从例子出发

2、算法原理文章来源地址https://www.toymoban.com/news/detail-413816.html

到了这里,关于【数据挖掘】-支持向量机(SVM)+代码实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 异常数据检测 | Python实现支持向量机(SVM)的异常数据检测

    文章概述 SVM通常应用于监督式学习,但OneClassSVM算法可用于将异常检测这样的无监督式学习,它学习一个用于异常检测的决策函数其主要功能将新数据分类为与训练集相似的正常值或不相似的异常值。 模型描述 OneClassSVM的思想来源于这篇论文,SVM使用大边距的方法,它用于异

    2024年02月08日
    浏览(42)
  • 支持向量机SVM(包括线性核、多项式核、高斯核)python手写实现+代码框架说明

    理论参考《统计学习方法》Chapter.7 支持向量机(SVM) 完整代码见github仓库:https://github.com/wjtgoo/SVM-python 借鉴sklearn的代码构架,整体功能实现在SVM类中,包括各种类属性,以及常用的模型训练函数 SVM.fit(x,y,iterations) ,以及预测函数 SVM.predict(x) , 类输入参数 kernal: 默认:线性

    2023年04月17日
    浏览(88)
  • 【数据挖掘】-KNN算法+sklearn代码实现(六)

    🤵‍♂️ 个人主页:@Lingxw_w的个人主页 ✍🏻作者简介:计算机科学与技术研究生在读 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+   目录 介绍算法的例子 KNN算法原理

    2024年02月07日
    浏览(39)
  • 粒子群算法PSO优化支持向量机(PSO-SVM)的数据回归预测 matlab代码

    %%  清空环境变量 warning off             % 关闭报警信息 close all               % 关闭开启的图窗 clear                   % 清空变量 clc                     % 清空命令行 tic %%  导入数据 P_train = xlsread(\\\'data\\\',\\\'training set\\\',\\\'B2:G191\\\')\\\'; T_train= xlsread(\\\'data\\\',\\\'training set\\\',\\\'H2:H191\\\')\\\';

    2024年02月02日
    浏览(52)
  • 一个简单的使用支持向量机(SVM)进行回归预测的Python代码示例,包含了源数据和注释

    使用了scikit-learn库中的SVR类来实现支持向量机回归模型。首先,我们导入了所需的库,包括numpy用于处理数据,train_test_split用于划分训练集和测试集,SVR用于构建SVM回归模型,以及mean_squared_error和r2_score用于评估模型性能。 接着,我们定义了源数据,包括特征矩阵X和目标向量

    2024年02月11日
    浏览(52)
  • 机器学习之支持向量机(SVM)对乳腺癌数据二分类python实现

    支持向量机(Support Vector Machines)是一种二分类模型,它的目的是寻找一个超平面来对样本进行分割,分割的原则是间隔最大化,最终转化为一个凸二次规划问题来求解。 间隔最大化,就是所有样本点中,离我们分类界限超平面最近的样本点,尽可能的远离超平面。这种思想

    2024年02月03日
    浏览(100)
  • 数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成

    生成效果 基本描述 数据生成 | MATLAB实现1-DGAN生成对抗网络的数据生成 1.Matlab实现1-DGAN生成对抗网络数据生成,运行环境Matlab2021b及以上; 2.基于生成数据训练SVM分类模型; 3.计算生成数据在SVM模型上的分类准确率,同时测试原始数据在生成数据训练SVM模型上的分类准确率;

    2024年02月10日
    浏览(74)
  • 【数据分类】基于蜣螂优化算法优化支持向量机的数据分类方法 DBO-SVM分类算法【Matlab代码#47】

    详细介绍此处略,可参考DBO算法介绍 支持向量机(Support Vector Machine,SVM)是一种常用的监督学习算法,用于二分类和多分类问题。它的目标是找到一个超平面或者决策边界,将不同类别的样本点分开,并使得离决策边界最近的样本点的间隔最大化。 SVM的基本思想是将样本点

    2024年02月15日
    浏览(66)
  • 数据挖掘——关联规则(Association Rule)Apriori算法和python代码实现

    关联规则(Association Rules)是反映一个事物与其他事物之间的相互依存性和关联性,是数据挖掘的一个重要技术,用于从大量数据中挖掘出有价值的数据项之间的相关关系。 用一些例子来说明一下: 当我们在超市进行购物时,超市中有琳琅满目的商品,在每一次购物结束之后,

    2024年02月04日
    浏览(50)
  • 信息检索与数据挖掘 | (五)文档评分、词项权重计算及向量空间模型

    目录 📚词项频率及权重计算 🐇词项频率 🐇逆文档频率 🐇tf-idf权重计算 📚向量空间模型 🐇余弦相似度 🐇查询向量 🐇向量相似度计算 📚其他tf-idf权值计算方法 🐇tf的亚线性尺度变换方法 🐇基于最大值的tf归一化 🐇文档权值和查询权重机 我们需要一种方法分配一个

    2024年02月08日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包