Pytorch1.7复现PointNet++点云分割(含Open3D可视化)(文末有一个自己做的书缝识别项目代码)

这篇具有很好参考价值的文章主要介绍了Pytorch1.7复现PointNet++点云分割(含Open3D可视化)(文末有一个自己做的书缝识别项目代码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

  毕设需要,复现一下PointNet++的对象分类、零件分割和场景分割,找点灵感和思路,做个踩坑记录。

下载代码

https://github.com/yanx27/Pointnet_Pointnet2_pytorch
  我的运行环境是pytorch1.7+cuda11.0。

训练

  PointNet++代码能实现3D对象分类、对象零件分割和语义场景分割。

对象分类

  下载数据集ModelNet40,并存储在文件夹data/modelnet40_normal_resampled/

## e.g., pointnet2_ssg without normal features
python train_classification.py --model pointnet2_cls_ssg --log_dir pointnet2_cls_ssg
python test_classification.py --log_dir pointnet2_cls_ssg

## e.g., pointnet2_ssg with normal features
python train_classification.py --model pointnet2_cls_ssg --use_normals --log_dir pointnet2_cls_ssg_normal
python test_classification.py --use_normals --log_dir pointnet2_cls_ssg_normal

## e.g., pointnet2_ssg with uniform sampling
python train_classification.py --model pointnet2_cls_ssg --use_uniform_sample --log_dir pointnet2_cls_ssg_fps
python test_classification.py --use_uniform_sample --log_dir pointnet2_cls_ssg_fps
  • 主文件夹下运行代码python train_classification.py --model pointnet2_cls_ssg --log_dir pointnet2_cls_ssg时可能会报错:
    ImportError: cannot import name 'PointNetSetAbstraction'
    原因是pointnet2_cls_ssg.py文件import时的工作目录时models文件夹,但是实际运行的工作目录时models的上级目录,因此需要在pointnet2_cls_ssg.py里把from pointnet2_utils import PointNetSetAbstraction改成from models.pointnet2_utils import PointNetSetAbstraction

  参考README.md文件,分类不是我的主攻点,这里就略过了。

零件分割

  零件分割是将一个物体的各个零件分割出来,比如把椅子的椅子腿分出来。
  下载数据集ShapeNet,并存储在文件夹data/shapenetcore_partanno_segmentation_benchmark_v0_normal/
  运行也很简单:

## e.g., pointnet2_msg
python train_partseg.py --model pointnet2_part_seg_msg --normal --log_dir pointnet2_part_seg_msg
python test_partseg.py --normal --log_dir pointnet2_part_seg_msg

  shapenet数据集txt文件格式:前三个点是xyz,点云的位置坐标,后三个点是点云的法向信息,最后一个点是这个点所属的小类别,即1表示所属50个小类别中的第一个。

  写个代码用open3d可视化shapenet数据集的txt文件(随机配色):

import open3d as o3d
import numpy as np
'''
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.dirname(BASE_DIR)
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(ROOT_DIR, 'data_utils'))
'''
 
txt_path = '/home/lin/CV_AI_learning/Pointnet_Pointnet2_pytorch-master/data/shapenetcore_partanno_segmentation_benchmark_v0_normal/02691156/1b3c6b2fbcf834cf62b600da24e0965.txt'
# 通过numpy读取txt点云
pcd = np.genfromtxt(txt_path, delimiter=" ")
 
pcd_vector = o3d.geometry.PointCloud()
# 加载点坐标
# txt点云前三个数值一般对应x、y、z坐标,可以通过open3d.geometry.PointCloud().points加载
# 如果有法线或颜色,那么可以分别通过open3d.geometry.PointCloud().normals或open3d.geometry.PointCloud().colors加载
pcd_vector.points = o3d.utility.Vector3dVector(pcd[:, :3])
pcd_vector.colors = o3d.utility.Vector3dVector(pcd[:, 3:6])
o3d.visualization.draw_geometries([pcd_vector])

  GPU内存不够减小一下batch_size。
  我这里训练了一下,接着代码的best_model.pth继续训练150轮,RTX3080单显卡训练一轮得六七分钟,150轮花了半天多的时间。
  网上的代码基本test一下分割的一些参数就结束了,没有做可视化,参考这篇blog做了一下结果的可视化:PointNet++分割预测结果可视化。这篇blog首先用网络将输入图像的预测结果存为txt文件,然后用Matplotlib做可视化,过程有点复杂了,用open3d做可视化比较简洁一点,代码如下:

import tqdm
import matplotlib
import torch
import os
import warnings
import numpy as np
import open3d as o3d
from torch.utils.data import Dataset
import pybullet as p
from models.pointnet2_part_seg_msg import get_model as pointnet2
import time

warnings.filterwarnings('ignore')
matplotlib.use("Agg")
def pc_normalize(pc):
    centroid = np.mean(pc, axis=0)
    pc = pc - centroid
    m = np.max(np.sqrt(np.sum(pc ** 2, axis=1)))
    pc = pc / m
    return pc,centroid,m

def generate_pointcloud(color_image, depth_image,width=1280,height=720,fov=50,near=0.01,far=5):
    rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(color_image, depth_image,convert_rgb_to_intensity=False)
    intrinsic = o3d.camera.PinholeCameraIntrinsic(o3d.camera.PinholeCameraIntrinsicParameters.Kinect2DepthCameraDefault )

    aspect = width / height

    projection_matrix = p.computeProjectionMatrixFOV(fov, aspect, near, far)
    intrinsic.set_intrinsics(width=width, height=height, fx=projection_matrix[0]*width/2, fy=projection_matrix[5]*height/2, cx=width/2, cy=height/2)
    point_cloud = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, intrinsic)
    
    point_cloud.estimate_normals( search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
    return point_cloud

class PartNormalDataset(Dataset):
    def __init__(self, point_cloud, npoints=2500, normal_channel=False):
        self.npoints = npoints # 采样点数
        self.cat = {}
        self.normal_channel = normal_channel # 是否使用法向信息

        position_data = np.asarray(point_cloud.points)
        normal_data = np.asarray(point_cloud.normals)
        self.raw_pcd = np.hstack([position_data,normal_data]).astype(np.float32)

        self.cat = {'board':'12345678'}
        # 输出的是元组,('Airplane',123.txt)

        self.classes = {'board': 0} 

        data = self.raw_pcd

        if not self.normal_channel:  # 判断是否使用法向信息
            self.point_set = data[:, 0:3]
        else:
            self.point_set = data[:, 0:6]

        self.point_set[:, 0:3],self.centroid,self.m = pc_normalize(self.point_set[:, 0:3]) # 做一个归一化

        choice = np.random.choice(self.point_set.shape[0], self.npoints, replace=True) # 对一个类别中的数据进行随机采样 返回索引,允许重复采样
        # resample
        self.point_set =  self.point_set[choice, :] # 根据索引采样

    def __getitem__(self, index):

        cat = list(self.cat.keys())[0]
        cls = self.classes[cat] # 将类名转换为索引
        cls = np.array([cls]).astype(np.int32)

        return self.point_set, cls, self.centroid, self.m # pointset是点云数据,cls十六个大类别,seg是一个数据中,不同点对应的小类别

    def __len__(self):
        return 1



class Generate_txt_and_3d_img:
    def __init__(self,num_classes,testDataLoader,model,visualize = False):
        self.testDataLoader = testDataLoader
        self.num_classes = num_classes
        self.heat_map = False # 控制是否输出heatmap
        self.visualize = visualize # 是否open3d可视化
        self.model = model

        self.generate_predict()
        self.o3d_draw_3d_img()

    def __getitem__(self, index):
        return self.predict_pcd_colored

    def generate_predict(self):

        for _, (points, label,centroid,m) in tqdm.tqdm(enumerate(self.testDataLoader),
                                                                      total=len(self.testDataLoader),smoothing=0.9):

            #点云数据、整个图像的标签、每个点的标签、  没有归一化的点云数据(带标签)torch.Size([1, 7, 2048])
            points = points.transpose(2, 1)
            #print('1',target.shape) # 1 torch.Size([1, 2048])
            xyz_feature_point = points[:, :6, :]

            model = self.model

            seg_pred, _ = model(points, self.to_categorical(label, 1))
            seg_pred = seg_pred.cpu().data.numpy()

            if self.heat_map:
                out =  np.asarray(np.sum(seg_pred,axis=2))
                seg_pred = ((out - np.min(out) / (np.max(out) - np.min(out))))
            else:
                seg_pred = np.argmax(seg_pred, axis=-1)  # 获得网络的预测结果 b n c

            seg_pred = np.concatenate([np.asarray(xyz_feature_point), seg_pred[:, None, :]],
                    axis=1).transpose((0, 2, 1)).squeeze(0) 

            self.predict_pcd = seg_pred
            self.centroid = centroid
            self.m = m


    def o3d_draw_3d_img(self):

        pcd = self.predict_pcd
        pcd_vector = o3d.geometry.PointCloud()
        # 加载点坐标
        pcd_vector.points = o3d.utility.Vector3dVector(self.m * pcd[:, :3] + self.centroid)
        # colors = np.random.randint(255, size=(2,3))/255
        colors = np.array([[0.8, 0.8, 0.8],[1,0,0]])
        pcd_vector.colors = o3d.utility.Vector3dVector(colors[list(map(int,pcd[:, 6])),:])

        if self.visualize:
            coord_mesh = o3d.geometry.TriangleMesh.create_coordinate_frame(size = 0.1, origin = [0,0,0])
            o3d.visualization.draw_geometries([pcd_vector,coord_mesh])
        self.predict_pcd_colored = pcd_vector

    def to_categorical(self,y, num_classes):
        """ 1-hot encodes a tensor """
        new_y = torch.eye(num_classes)[y.cpu().data.numpy(),]
        if (y.is_cuda):
            return new_y.cuda()
        return new_y

def load_models(model_dict={'PonintNet': [pointnet2(num_classes=2,normal_channel=True).eval(),r'./log/part_seg/pointnet2_part_seg_msg/checkpoints']}):
    model = list(model_dict.values())[0][0]
    checkpoints_dir = list(model_dict.values())[0][1]
    weight_dict = torch.load(os.path.join(checkpoints_dir,'best_model.pth'))
    model.load_state_dict(weight_dict['model_state_dict'])
    return model

class Open3dVisualizer():

	def __init__(self):

		self.point_cloud = o3d.geometry.PointCloud()
		self.o3d_started = False

		self.vis = o3d.visualization.VisualizerWithKeyCallback()
		self.vis.create_window()

	def __call__(self, points, colors):

		self.update(points, colors)

		return False

	def update(self, points, colors):
		coord_mesh = o3d.geometry.TriangleMesh.create_coordinate_frame(size = 0.15, origin = [0,0,0])
		self.point_cloud.points = points
		self.point_cloud.colors = colors
		# self.point_cloud.transform([[1,0,0,0],[0,-1,0,0],[0,0,-1,0],[0,0,0,1]])
		# self.vis.clear_geometries()
		# Add geometries if it is the first time
		if not self.o3d_started:
			self.vis.add_geometry(self.point_cloud)
			self.vis.add_geometry(coord_mesh)
			self.o3d_started = True

		else:
			self.vis.update_geometry(self.point_cloud)
			self.vis.update_geometry(coord_mesh)

		self.vis.poll_events()
		self.vis.update_renderer()

if __name__ =='__main__':
    
    num_classes = 2 # 填写数据集的类别数 如果是s3dis这里就填13   shapenet这里就填50
    
    color_image = o3d.io.read_image('image/rgb1.jpg')
    depth_image = o3d.io.read_image('image/depth1.png')
    
    point_cloud = generate_pointcloud(color_image=color_image, depth_image=depth_image)

    TEST_DATASET = PartNormalDataset(point_cloud,npoints=30000, normal_channel=True)
    testDataLoader = torch.utils.data.DataLoader(TEST_DATASET, batch_size=1, shuffle=False, num_workers=0,drop_last=True)
    predict_pcd = Generate_txt_and_3d_img(num_classes,testDataLoader,load_models(),visualize = True)

  把之前的代码改成了针对单个点云预测的可视化,点云由GRB图像和深度图像生成,如果想直接输入点云自己稍微改下代码就可以了,目前仅针对shapenet数据集格式的数据。这里要注意如果训练的时候选择了--normal,那么normal_channel要改成True
  看下训练效果,用modelnet40里的一个chair文件进行预测。

Pytorch1.7复现PointNet++点云分割(含Open3D可视化)(文末有一个自己做的书缝识别项目代码)Pytorch1.7复现PointNet++点云分割(含Open3D可视化)(文末有一个自己做的书缝识别项目代码)Pytorch1.7复现PointNet++点云分割(含Open3D可视化)(文末有一个自己做的书缝识别项目代码)

  可以看到这个椅子大致是分成了四块,但是椅子靠背、腿分割地挺好的,就是扶手有一部分分割到了坐垫那里了,毕竟训练时间不长。modelnet40数据集只是用来分类,并没有分割的标注,所以这里可视化了一下shapenet里标注好的椅子点云,看看椅子各个部位的分割(并非上面的椅子)。

Pytorch1.7复现PointNet++点云分割(含Open3D可视化)(文末有一个自己做的书缝识别项目代码)Pytorch1.7复现PointNet++点云分割(含Open3D可视化)(文末有一个自己做的书缝识别项目代码)

  这里就比较显而易见地看出椅子分为靠背、扶手、坐垫、腿四个部分。
  初步观察到效果以后可以开始尝试自己制作数据集进行训练了,可以参考我写的这篇文章:《CloudCompare制作ShapeNet格式点云数据集》。

场景分割

  零件分割网络可以很容易地扩展到语义场景分割,点标记成为语义对象类而不是目标零件标记。
  在 Stanford 3D语义分析数据集上进行实验。该数据集包含来自Matterport扫描仪的6个区域的3D扫描,包括271个房间。扫描中的每个点都用13个类别(椅子、桌子、地板、墙壁等加上杂物)中的一个语义标签进行注释。
  先把文件下载过来: S3DIS ,存到文件夹data/s3dis/Stanford3dDataset_v1.2_Aligned_Version/.
  处理数据,数据会存到data/stanford_indoor3d/

cd data_utils
python collect_indoor3d_data.py

  运行:

## Check model in ./models 
## e.g., pointnet2_ssg
python train_semseg.py --model pointnet2_sem_seg --test_area 5 --log_dir pointnet2_sem_seg
python test_semseg.py --log_dir pointnet2_sem_seg --test_area 5 --visual

  上面的操作走完以后会在log/sem_seg/pointnet2_sem_seg/visual/生成预测结果的obj文件,可以用open3d进行可视化,就是不能用o3d.io.read_triangle_mesh函数来可视化obj文件,因为这里生成的obj文件还带了颜色信息用来表示语义信息,所以得读取成列表数据然后定义成o3d.geometry.PointCloud()变量显示,代码如下:

import copy
import numpy as np
import open3d as o3d
import os

objFilePath = 'log/sem_seg/pointnet2_sem_seg/visual/Area_5_office_8_gt.obj'

with open(objFilePath) as file:
    points = []
    while 1:
        line = file.readline()
        if not line:
            break
        strs = line.split(" ")
        if strs[0] == "v":
            points.append(np.array(strs[1:7],dtype=float))
        if strs[0] == "vt":
            break
# points原本为列表,需要转变为矩阵,方便处理          
pcd = np.array(points)

pcd_vector = o3d.geometry.PointCloud()
pcd_vector.points = o3d.utility.Vector3dVector(pcd[:, :3])
pcd_vector.colors = o3d.utility.Vector3dVector(pcd[:,3:6])
o3d.visualization.draw_geometries([pcd_vector])

  康康Area_5里office_8的效果:
  原图:

Pytorch1.7复现PointNet++点云分割(含Open3D可视化)(文末有一个自己做的书缝识别项目代码)Pytorch1.7复现PointNet++点云分割(含Open3D可视化)(文末有一个自己做的书缝识别项目代码)Pytorch1.7复现PointNet++点云分割(含Open3D可视化)(文末有一个自己做的书缝识别项目代码)

  ground truth:
Pytorch1.7复现PointNet++点云分割(含Open3D可视化)(文末有一个自己做的书缝识别项目代码)
  predict:

Pytorch1.7复现PointNet++点云分割(含Open3D可视化)(文末有一个自己做的书缝识别项目代码)Pytorch1.7复现PointNet++点云分割(含Open3D可视化)(文末有一个自己做的书缝识别项目代码)

  OK,大致算是把这个PointNet++复现完了,着重做了下点云分割,给毕设做准备。总的来讲,训练和预测的过程并不难,为了康康效果,可视化的部分倒是花了挺长时间。零件分割和场景分割本质上讲其实是一回事,就是在代码里面这两个分割用了不同的模型来训练。之后打算自己制作数据集来训练一下,先拿零件分割的模型来做,毕竟场景分割做成S3DIS形式的数据集有点麻烦。总之跟着这篇blog走肯定是能跑通PointNet++的。


  添加一个自己做的用pointnet++做的书缝识别项目,GitHub里面有数据集和代码:https://github.com/struggler176393/Pointnet_book_seam。文章来源地址https://www.toymoban.com/news/detail-413960.html

到了这里,关于Pytorch1.7复现PointNet++点云分割(含Open3D可视化)(文末有一个自己做的书缝识别项目代码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Open3D点云处理

    Open3D is an open-source library that supports rapid development of software that deals with 3D data. The Open3D frontend exposes a set of carefully selected data structures and algorithms in both C++ and Python. The backend is highly optimized and is set up for parallelization. Open3D是一个支持3D数据处理软件快速开发的开源库,在前端提供

    2023年04月17日
    浏览(57)
  • Open3d点云对象详解

    PointCloud 是open3d中用于点云处理的类,封装了包括几何变换、数据滤波、聚类分割等一系列实用算法。如无特别说明,本例中所有例程均基于斯坦福兔子的点云模型,下载地址:斯坦福标准模型 读取和清除点云 一般点云数据的读取方法属于 open3d.io 的内容,但点云类也提供了

    2023年04月19日
    浏览(87)
  • Open3D点云数据处理(一):VSCode配置python,并安装open3d教程

    专栏地址:https://blog.csdn.net/weixin_46098577/category_11392993.html 在很久很久以前,我写过这么一篇博客,讲的是open3d点云处理的基本方法。👇 当时是 PyCharm + Anaconda + python3.8 + open3d 0.13 已经是2023年了,现在有了全新版本。目前python由当年的3.8更新到了3.11版本,open3d也从0.13来到了

    2024年02月07日
    浏览(65)
  • open3d操作.ply文件(点云)

    读取.ply文件

    2024年02月14日
    浏览(33)
  • 点云可视化 open3D

    禁止转载 Python点云数据处理(六)Open3d补充:点云基本处理 - 知乎 https://zhuanlan.zhihu.com/p/353971365?utm_id=0 open3d绘制点云1–单帧点云 - 知乎 https://zhuanlan.zhihu.com/p/591249741 (168条消息) open3D 的使用,pcd可视化,3D bbox可视化,web_visualizer使用等。_CV矿工的博客-CSDN博客 https://blog.csdn.ne

    2024年02月09日
    浏览(45)
  • open3d-点云读写和显示

    目录 一,点云读取 二,点云写入 二,点云显示 三、 open3d支持如下点云文件类型 ​四、代码及结果示例 参数: filename (str): 点云文件路径 format (str, optional, default=\\\'auto\\\'): 输入文件格式filehe的路径。 如果未指定或设置为“auto”,则从文件扩展名推断格式  remove_nan_points (bool,

    2024年02月04日
    浏览(49)
  • Open3D 详解:点云裁剪实战

    Open3D 详解:点云裁剪实战 在进行点云处理时,经常需要对点云进行裁剪操作,以去除无用的噪点或仅保留感兴趣区域内的点云。Open3D 是一个广泛应用于三维数据处理的开源库,提供了简单易用的点云裁剪方法。 以下是一个基于 Open3D 的点云裁剪实战例程。首先,我们导入需

    2024年02月06日
    浏览(49)
  • Open3D常用点云滤波

    在点云处理中,过密的点云需要下采样,离群点和噪声点需要去除,通过滤波的方法,可以抽稀点云,把离群点去除,以便进行下一步处理 open3d中,很多滤波器已经被封装成了对应的方法(源码是C++) 直通滤波过滤指定维度(x,y,z)内,指定值域外的点 下采样 首先根据输入

    2024年02月06日
    浏览(41)
  • PyQt open3d 加载 显示点云

    PyQt加载 显示点云,已经有三种方式,使用 open3d; 使用 vtk; 使用 pcl; 下面是使用 open3d:  

    2024年02月11日
    浏览(51)
  • Open3d读写ply点云文件

    本文为博主原创文章,未经博主允许不得转载。 本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。         Open3d是由Intel发布的一个开源库,支持快速开发和处理3D数据。Open3D在c++和Python中公开了一组精心选

    2023年04月08日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包