pytorch transforms图像增强

这篇具有很好参考价值的文章主要介绍了pytorch transforms图像增强。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、前言

在学习自己的项目发现自己有很多基础知识不牢,对于图像处理有点不太清楚,因此写下来作为自己的笔记,主要是我想自己动手写一下每一句代码到底做了什么,而不是单纯的我看了知道了它做了什么,说白了,不想停在看,而是要真正自己敲。

本文基于的是pytorch1.7.1

二、图像处理

深度学习是由数据驱动的,而数据的数量和分布对于模型的优劣具有决定性作用,所以我们需要对数据进行一定的预处理以及数据增强,用于提升模型的泛化能力。

一般来说深度学习神经网络训练前都需要做数据增强 (Data Augmentation) 又称为数据增广、数据扩增,它是对 训练集 进行变换,使训练集更丰富,从而让模型更具 泛化能力

下面为常见的图像变换

1.原始图片

pytorch transforms图像增强

显示图片,并读取图片大小

    1

    2

    3

    4

    5

    6

    7

    8

    9

from torchvision import transforms

from PIL import Image # 用于读取图片

import  matplotlib.pyplot as plt # 用于显示图片

image_path = './dog.jpg'

image = Image.open(image_path)

plt.imshow(image)

print(image.size)

plt.show()

pytorch transforms图像增强

图片大小(1024, 683)

2.调整图片大小transforms.Resize

2.1.transforms.Resize(x)

主要用于调整PILImage对象的尺寸大小,图片短边缩放至x,长宽比保持不变

将图片短边缩放至x,长宽比保持不变,上述图片执行transforms.Resize(300)

    1

    2

    3

    4

    5

    6

    7

    8

    9

   10

   11

from torchvision import transforms

from PIL import Image # 用于读取图片

import  matplotlib.pyplot as plt # 用于显示图片

# 图片显示,打印图片大小

image_path = './dog.jpg'

image = Image.open(image_path)

resize = transforms.Resize(300)

image1 = resize(image)

plt.imshow(image1)

print(image1.size)

plt.show()

图片大小(449, 300)

得到如下

pytorch transforms图像增强

2.2.transforms.Resize([x, y])

同时指定图片长宽,这样会改变长宽比例但是不是裁剪,可以恢复

    1

    2

    3

    4

    5

    6

    7

    8

    9

   10

   11

from torchvision import transforms

from PIL import Image # 用于读取图片

import  matplotlib.pyplot as plt # 用于显示图片

# 图片显示,打印图片大小

image_path = './dog.jpg'

image = Image.open(image_path)

resize = transforms.Resize([512, 300])

image1 = resize(image)

plt.imshow(image1)

print(image1.size)

plt.show()

图片大小(512, 300)

pytorch transforms图像增强

2.3关于图片的恢复

测试代码

    1

    2

    3

    4

    5

    6

    7

    8

    9

   10

   11

   12

   13

   14

from torchvision import transforms

from PIL import Image # 用于读取图片

import  matplotlib.pyplot as plt # 用于显示图片

# 图片显示,打印图片大小

image_path = './dog.jpg'

image = Image.open(image_path)

w, h = image.size

resize = transforms.Resize([512, 300])

image1 = resize(image)

resize2 = transforms.Resize([h, w])

image2 = resize2(image1)

plt.imshow(image2)

print(image2.size)

plt.show()

图片大小(1024, 683)

注意这里要使用transforms.Resize([h, w])

pytorch transforms图像增强

3.图片裁剪

3.1中心裁剪transforms.CenterCrop

作用:中心裁剪图片

主要参数:size,表示需要裁剪的图片大小

代码示例:

    1

    2

    3

    4

    5

    6

    7

    8

    9

   10

   11

from torchvision import transforms

from PIL import Image

import matplotlib.pyplot as plt

transform = transforms.CenterCrop(512)

image_path= "./dog.jpg"

image = Image.open(image_path)

image1 = transform(image)

plt.imshow(image1)

print(image1.size)

plt.show()

image1.save('./dog_clipping.jpg')

图片大小(512, 512)

pytorch transforms图像增强

3.2随机裁剪transforms.RandomCrop(size,padding=None,pad_if_needed=False,fill=0,padding_mode='constant')

主要参数:

size为需要裁剪的图片大小

padding:设置填充大小

大小为a:表示上下左右都填充a个元素

大小为(a, b):表示左右填充a个元素,上下填充b个元素

大小为(a, b, c, d):表示左上右下填充a, b, c, d个元素

pad_if_needed:若图像小于设定 size,则填充,此时该项需要设置为 True

padding_mode:填充模式,主要有四种

  • constant:像素值由 fill 设定。
  • edge:像素值由图像边缘像素决定。
  • reflect:镜像填充,最后一个像素不镜像,例如 [1, 2, 3, 4] → [3, 2, 1, 2, 3, 4, 3, 2]
  • symmetric:镜像填充,最后一个像素镜像,例如 [1, 2, 3, 4] → [2, 1, 1, 2, 3, 4, 4, 3]

fill:当填充模式为padding_mode的填充值

代码示例:

    1

    2

    3

    4

    5

    6

    7

    8

    9

   10

   11

from torchvision import transforms

import matplotlib.pyplot as plt

from PIL import Image

transform = transforms.RandomCrop(size=(512, 512), padding=50, pad_if_needed=True, fill=0,padding_mode="constant")

image_path = "./dog.jpg"

image = Image.open(image_path)

random_crop_image = transform(image)

print(random_crop_image.size)

plt.imshow(random_crop_image)

plt.show()

random_crop_image.save("./random_crop_image.jpg")

图片大小(512, 512)

pytorch transforms图像增强

3.3transforms.RandomResizedCrop

RandomResizedCrop(size,scale=(0.08,1.0),ratio=(3/4,4/3),interpolation)

将给定图像随机裁剪为不同的大小和宽高比,然后缩放所裁剪得到的图像为制定的大小;

主要参数:

size:为最终图片要resize的大小

scale:为随机采样最少要覆盖原图的比例,在resize前

ratio:为随机采样宽高的比例,也在resize前

interpolation:插值方法

代码示例:

    1

    2

    3

    4

    5

    6

    7

    8

    9

   10

   11

   12

   13

   14

from torchvision import transforms

import matplotlib.pyplot as plt

from PIL import Image

transform = transforms.RandomResizedCrop(size=(256, 256),

                                         scale=(0.08, 1),

                                         ratio=(3/ 4, 4/3),

                                         interpolation=Image.NEAREST)

image_path = "./dog.jpg"

image = Image.open(image_path)

random_resize_crop_image = transform(image)

print(random_resize_crop_image.size)

plt.imshow(random_resize_crop_image)

plt.show()

random_resize_crop_image.save("./dog_random_resize_crop.jpg")

图片大小(256, 256)

pytorch transforms图像增强

4.图片翻转与旋转

4.1.transforms.RandomHorizontalFlip(p=0.5)水平翻转

p为旋转的概率

代码示例:

    1

    2

    3

    4

    5

    6

    7

    8

    9

   10

   11

from torchvision import transforms

import matplotlib.pyplot as plt

from PIL import Image

transform = transforms.RandomHorizontalFlip(p=0.7)

image_path = "./dog.jpg"

image = Image.open(image_path)

RandomHorizontalFlip_image = transform(image)

print(RandomHorizontalFlip_image.size)

plt.imshow(RandomHorizontalFlip_image)

plt.show()

RandomHorizontalFlip_image.save("./RandomHorizontalFlip_image.jpg")

图片大小(1024, 683)

pytorch transforms图像增强

4.2transforms.RandomVerticalFlip垂直翻转

代码示例

    1

    2

    3

    4

    5

    6

    7

    8

    9

   10

   11

from torchvision import transforms

import matplotlib.pyplot as plt

from PIL import Image

transform = transforms.RandomVerticalFlip(p=0.8)

image_path = "./dog.jpg"

image = Image.open(image_path)

RandomVerticalFlip_image = transform(image)

print(RandomVerticalFlip_image.size)

plt.imshow(RandomVerticalFlip_image)

plt.show()

RandomVerticalFlip_image.save("./RandomVerticalFlip_image.jpg")

图片大小(1024, 683)

pytorch transforms图像增强

4.3旋转transforms.RandomRotation

RandomRotation(degrees,resample=False,expand=False,center=None)

主要参数:

  • degrees:旋转角度。

        当为 a 时,在 (-a, a) 之间随机选择旋转角度。

        当为 (a, b) 时,在 (a, b) 之间随机选择旋转角度。

  • resample:重采样方法。
  • expand:是否扩大图片,以保持原图信息。
  • center:旋转点设置,默认中心旋转

代码示例:

    1

    2

    3

    4

    5

    6

    7

    8

    9

   10

   11

from torchvision import transforms

import matplotlib.pyplot as plt

from PIL import Image

transform = transforms.RandomRotation(degrees=90,resample=False, expand=True, center=None, fill=0)

image_path = "./dog.jpg"

image = Image.open(image_path)

RandomRotation_image = transform(image)

print(RandomRotation_image.size)

plt.imshow(RandomRotation_image)

plt.show()

RandomRotation_image.save("./RandomRotation_image.jpg")

图片大小(1214, 1203)

pytorch transforms图像增强

参考博客与资料:

Pytorch transforms.Resize()的简单用法_xiongxyowo的博客-CSDN博客

PyTorch 08:transforms 数据增强:裁剪、翻转、旋转 - YEY 的博客 | YEY Blog

Pytorch中transforms.RandomResizedCrop()等图像操作_心向林丶的博客-CSDN博客

Illustration of transforms — Torchvision main documentation (pytorch.org)文章来源地址https://www.toymoban.com/news/detail-413993.html

到了这里,关于pytorch transforms图像增强的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 图像色彩增强相关论文阅读-Representative Color Transform for Image Enhancement(ICCV2021)

    作者:Hanul Kim1, Su-Min Choi2, Chang-Su Kim3, Yeong Jun Koh 单位:Seoul National University of Science and Technology 2Chungnam National University 3Korea University 前人方法都是encode-decode方式,丢失细节;密集转化也限制颜色空间的迁移效果; 本文使用颜色迁移表征(RCT)表征颜色变化,根据输入和表征颜

    2024年02月11日
    浏览(49)
  • 【pytorch】Vision Transformer实现图像分类+可视化+训练数据保存

    Transformer的核心是 “自注意力” 机制。 论文地址:https://arxiv.org/pdf/2010.11929.pdf 自注意力(self-attention) 相比 卷积神经网络 和 循环神经网络 同时具有并行计算和最短的最大路径⻓度这两个优势。因此,使用自注意力来设计深度架构是很有吸引力的。对比之前仍然依赖循环神

    2023年04月08日
    浏览(45)
  • 学习pytorch4 transforms的使用

    B站小土堆视频学习 类实例化–__call__方法调用 输出结果: tensor数据类型包含了神经网络需要用到的一些参数 https://blog.csdn.net/qq_28306361/article/details/103519982 hook的使用 回答1: 可能是因为保存的RGB通道不一样导致的

    2024年02月12日
    浏览(33)
  • 深度学习三维图像数据增强——Monai实现

    笔者接触深度学习不久,跑过一些二维图像的深度学习代码,对于二维图像,深度学习数据增强可借助skimage、opencv、imgaug、Albumentations、Augmentor等多数主流的库实现,在这里放一个大神的链接,可供参考。但对于三维数据,能够借助的库便少了起来,常用的有TorchIO和Monai,而

    2024年02月04日
    浏览(47)
  • pytorch进阶学习(三):在数据集数量不够时如何进行数据增强

    对图片数据增强,可以对图片实现: 1. 尺寸放大缩小 2. 旋转(任意角度,如45°,90°,180°,270°) 3. 翻转(水平翻转,垂直翻转) 4. 明亮度改变(变亮,变暗) 5. 像素平移(往一个方向平移像素,空出部分自动填补黑色) 6. 添加噪声(椒盐噪声,高斯噪声) 目录 一、放

    2024年02月13日
    浏览(42)
  • 学习pytorch中归一化transforms.Normalize

    包含 torchvison.transforms(常用的图像预处理方法); torchvision.datasets(常用数据集的dataset实现,MNIST,CIFAR-10,ImageNet等); torchvison.model(常用的模型预训练,AlexNet,VGG,ResNet,GoogleNet等)。 常用的数据预处理方法,提升泛化能力。包括:数据中心化、数据标准化、缩放、裁剪、旋转、填充

    2024年02月04日
    浏览(42)
  • 使用深度学习的微光图像和视频增强:综述

    1INTRODUCTION 微光图像增强(LLIE)旨在提高在光照较差的环境中捕获的图像的感知或可解释性。该领域的最新进展主要是基于深度学习的解决方案,其中采用了许多学习策略、网络结构、损失函数、训练数据等。在本文中,我们提供了一个全面的调查,涵盖了从算法分类到未解

    2024年02月03日
    浏览(42)
  • 《动手学深度学习 Pytorch版》 10.7 Transformer

    自注意力同时具有并行计算和最短的最大路径长度这两个优势。Transformer 模型完全基于注意力机制,没有任何卷积层或循环神经网络层。尽管 Transformer 最初是应用于在文本数据上的序列到序列学习,但现在已经推广到各种现代的深度学习中,例如语言、视觉、语音和强化学习

    2024年02月08日
    浏览(49)
  • 深度学习实战24-人工智能(Pytorch)搭建transformer模型,真正跑通transformer模型,深刻了解transformer的架构

    大家好,我是微学AI,今天给大家讲述一下人工智能(Pytorch)搭建transformer模型,手动搭建transformer模型,我们知道transformer模型是相对复杂的模型,它是一种利用自注意力机制进行序列建模的深度学习模型。相较于 RNN 和 CNN,transformer 模型更高效、更容易并行化,广泛应用于神

    2023年04月22日
    浏览(66)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包