YOLOV8改进-添加EIoU,SIoU,AlphaIoU,FocalEIoU,Wise-IoU

这篇具有很好参考价值的文章主要介绍了YOLOV8改进-添加EIoU,SIoU,AlphaIoU,FocalEIoU,Wise-IoU。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在YoloV8中添加EIoU,SIoU,AlphaIoU,FocalEIoU,Wise-IoU.

2023-2-7 更新 yolov8添加Wise-IoUB站链接

重磅!!!!! YOLO模型改进集合指南-CSDN

yolov8中box_iou其默认用的是CIoU,其中代码还带有GIoU,DIoU,文件路径:ultralytics/yolo/utils/metrics.py,函数名为:bbox_iou

def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
    # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)

    # Get the coordinates of bounding boxes
    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
        w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
        w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)

    # Intersection area
    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
            (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps

    # IoU
    iou = inter / union
    if CIoU or DIoU or GIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared
            rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center dist ** 2
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
                with torch.no_grad():
                    alpha = v / (v - iou + (1 + eps))
                return iou - (rho2 / c2 + v * alpha)  # CIoU
            return iou - rho2 / c2  # DIoU
        c_area = cw * ch + eps  # convex area
        return iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdf
    return iou  # IoU

我们可以看到函数顶部,有GIoU,DIoU,CIoU的bool参数可以选择,如果全部为False的时候,其会返回最普通的Iou,如果其中一个为True的时候,即返回设定为True的那个Iou。

那么重点来了,我们怎么在这个函数里面添加EIoU,SIoU,AlphaIoU,FocalEIoU呢?

我们只需要把上面提及到的这个函数替换成以下,代码出自:github链接,这个github上还有一些yolov5的改进源码和一些常用的脚本,有兴趣可以去看看,请各位也帮忙点个star支持下,谢谢!

def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, Focal=False, alpha=1, gamma=0.5, eps=1e-7):
    # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)

    # Get the coordinates of bounding boxes
    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
        w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
        w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)

    # Intersection area
    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
            (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps

    # IoU
    # iou = inter / union # ori iou
    iou = torch.pow(inter/(union + eps), alpha) # alpha iou
    if CIoU or DIoU or GIoU or EIoU or SIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height
        if CIoU or DIoU or EIoU or SIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squared
            rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
                with torch.no_grad():
                    alpha_ciou = v / (v - iou + (1 + eps))
                if Focal:
                    return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter/(union + eps), gamma)  # Focal_CIoU
                else:
                    return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoU
            elif EIoU:
                rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2
                rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2
                cw2 = torch.pow(cw ** 2 + eps, alpha)
                ch2 = torch.pow(ch ** 2 + eps, alpha)
                if Focal:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter/(union + eps), gamma) # Focal_EIou
                else:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIou
            elif SIoU:
                # SIoU Loss https://arxiv.org/pdf/2205.12740.pdf
                s_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + eps
                s_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + eps
                sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)
                sin_alpha_1 = torch.abs(s_cw) / sigma
                sin_alpha_2 = torch.abs(s_ch) / sigma
                threshold = pow(2, 0.5) / 2
                sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)
                angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)
                rho_x = (s_cw / cw) ** 2
                rho_y = (s_ch / ch) ** 2
                gamma = angle_cost - 2
                distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)
                omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)
                omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)
                shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)
                if Focal:
                    return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter/(union + eps), gamma) # Focal_SIou
                else:
                    return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIou
            if Focal:
                return iou - rho2 / c2, torch.pow(inter/(union + eps), gamma)  # Focal_DIoU
            else:
                return iou - rho2 / c2  # DIoU
        c_area = cw * ch + eps  # convex area
        if Focal:
            return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter/(union + eps), gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdf
        else:
            return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdf
    if Focal:
        return iou, torch.pow(inter/(union + eps), gamma)  # Focal_IoU
    else:
        return iou  # IoU

注意事项

  1. 我认为Focal_EIoU的思想是可以用作与其他IoU的变种,因此我对里面所有的IoU都支持Focal_EIoU的思想,只需要设定Focal参数为True即可,我自己测试的过程中,除了Focal_SIoU出现loss为inf之外,其他的都正常,不过这个不同的数据集可能出现不一样,具体可以自行测试下。
  2. gamma参数是Focal_EIoU中的gamma参数,一般就是为0.5,有需要可以自行更改。
  3. alpha参数为AlphaIoU中的alpha参数,默认为1,1的意思就是跟正常的IoU一样,如果想采用AlphaIoU的话,论文alpha默认值为3。(比如我不想使用AlphaIoU的特性,我就把alpha设置为1就可以,如果我想使用AlphaIoU的特性,我可以设置alpha为3)。
  4. 跟Focal_EIoU一样,我认为AlphaIoU的思想同样可以用在其他的IoU变种上,简单来说就是如果你设置了alpha为3,其他IoU设定的参数(GIoU,DIoU,CIoU,EIoU,SIoU)为False的时候,那就是AlphaIoU,如果你设置了alpha为3,CIoU为True的时候,那就是AlphaCIoU,效果的话就因数据集和模型而已,具体可以自行测试下。
  5. 想用那个IoU变种,就直接设置参数为True即可。
  6. AlphaIoU理论上与Focal_EIoU没有直接的冲突,但是作者这边没有详细测试过,这两者一起用会是什么效果,有兴趣可以自行测试下。

除了以上这个函数替换,还需要在ultralytics/yolo/utils/loss.py中BboxLoss Class中的forward函数中修改一下:

原本的forward函数如下:
YOLOV8改进-添加EIoU,SIoU,AlphaIoU,FocalEIoU,Wise-IoU

主要对红框部分替换为以下代码:

iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True)
if type(iou) is tuple:
    loss_iou = ((1.0 - iou[0]) * iou[1].detach() * weight).sum() / target_scores_sum
else:
    loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum

最后修改参数就在调用bbox_iou中进行修改即可,比如上面的代码就是使用了CIoU,如果你想使用Focal_EIoU那么你可以修改为下:

iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, EIoU=True, Focal=True) 

YoloV8中在标签分配规则中也有用到bbox_iou的函数,具体在:ultralytics/yolo/utils/tal.py的TaskAlignedAssigner class中的get_box_metrics函数:

YOLOV8改进-添加EIoU,SIoU,AlphaIoU,FocalEIoU,Wise-IoU
对于这个我个人修改建议就是跟你计算IoU Loss的时候选择一样即可,但是这里不需要开启Focal选项,因为这里只是单纯求交并比。意思就是你在计算IoU Loss的时候,比如选择了Focal=True和CIoU=True,那么在这里你只需要选择CIoU=True即可。文章来源地址https://www.toymoban.com/news/detail-414124.html

最后希望这篇文章可以帮助到大家。博文求点赞,github求star,谢谢啦!

到了这里,关于YOLOV8改进-添加EIoU,SIoU,AlphaIoU,FocalEIoU,Wise-IoU的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 剑指YOLOv8改进最新MPDIoU损失函数:超越现有多种G/D/C/EIoU,23年7月首发论文,高效准确的边界框回归的损失

    💡 本篇内容 :剑指YOLOv8改进最新MPDIoU损失函数:超越现有多种G/D/C/EIoU,23年7月首发论文,高效准确的边界框回归的损失 💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv8 按步骤操作运行改进后的代码即可 💡:重点:该 专栏 《剑指YOLOv8原创改进》只更新改进 YOLOv8 模型的内

    2024年02月14日
    浏览(39)
  • yolov5 优化方法(四)修改bbox损失函数(补充EIOU,SIOU)

    【参考文档】江大白的yolo解析 后面会给出我的完整代码,先来分段看看! 转换成这种格式: 这个应该都很熟了 clamp inf:无穷大 -inf:负无穷 out:输出,默认即可,不用设定 在 yolov5的使用中,应该是截断掉小于0的部分 torch.clamp 在正式进入各种iou之前 cw :最小外包矩形宽度

    2024年02月06日
    浏览(50)
  • yolov5增加iou loss(SIoU,EIoU,WIoU),无痛涨点trick

            yolo无痛涨点trick,简单实用         先贴一张最近一篇论文的结果 后来的几种iou的消融实验结果在一定程度上要优于CIoU。         本文将在yolov5的基础上增加SIoU,EIoU,Focal-XIoU(X为C,D,G,E,S等)以及AlphaXIoU。         在yolov5的utils文件夹下新增iou.py文件

    2024年01月19日
    浏览(39)
  • 改进YOLO系列:改进YOLOv8,教你YOLOv8如何添加20多种注意力机制,并实验不同位置。

    注意力机制(Attention Mechanism)是深度学习中一种重要的技术,它可以帮助模型更好地关注输入数据中的关键信息,从而提高模型的性能。注意力机制最早在自然语言处理领域的序列到序列(seq2seq)模型中得到广泛应用,后来逐渐扩展到了计算机视觉、语音识别等多个领域。

    2024年02月16日
    浏览(38)
  • YOLOv8改进算法之添加CA注意力机制

    CA(Coordinate Attention)注意力机制是一种用于加强深度学习模型对输入数据的空间结构理解的注意力机制。CA 注意力机制的核心思想是引入坐标信息,以便模型可以更好地理解不同位置之间的关系。如下图: 1. 输入特征 : CA 注意力机制的输入通常是一个特征图,它通常是卷积

    2024年02月08日
    浏览(42)
  • 改进YOLOv8:添加CBAM注意力机制(涨点明显)

    计算机视觉中的注意力机制是一种聚焦于局部信息的机制,其基本思想是让系统学会忽略无关信息而关注重点信息。这种机制在图像识别、物体检测和人脸识别等任务中都发挥了重要作用。 注意力机制的实现方法有多种,其中包括 空间注意力 模型、 通道注意力 模型、 空间

    2024年01月15日
    浏览(58)
  • YOLOv8算法改进【NO.97】借鉴YOLOv7算法的方法添加辅助训练头

     前   言        YOLO算法改进系列出到这,很多朋友问改进如何选择是最佳的,下面我就根据个人多年的写作发文章以及指导发文章的经验来看,按照优先顺序进行排序讲解YOLO算法改进方法的顺序选择。具体有需求的同学可以私信我沟通: 第一, 创新主干特征提取网络,

    2024年01月22日
    浏览(47)
  • YOLOV8改进:在C2f模块不同位置添加注意力机制

    本文以CBAM注意力机制为例,在c2f模块的不同位置添加注意力机制,没有用v8自带的CBAM模块,而是自己之前用过的代码。 CBAM简单介绍: CBAM这是一种用于前馈卷积神经网络的简单而有效的注意模块。 给定一个中间特征图,我们的模块会沿着两个独立的维度(通道和空间)依次

    2024年02月11日
    浏览(43)
  • Yolov5/Yolov7优化:引入Soft-NMS并结合各个IOU变体GIOU、DIOU、CIOU、EIOU、SIOU,进一步提升密集遮挡场景检测精度  

    💡💡💡本文改进:Soft-NMS并与各个IOU变体GIOU、DIOU、CIOU、EIOU、SIOU结合, 实现二次创新,并提升密集遮挡场景检测精度 💡💡💡Yolov8魔术师, 独家首发创新(原创) ,适用于 Yolov5、Yolov7、Yolov8等各个Yolo系列 ,专栏文章 提供每一步步骤和源码,轻松带你上手魔改网络 💡💡

    2024年02月10日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包