给定一颗树,树中包含 n 个结点(编号 1∼n)和 n−1 条无向边。
请你找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值。
重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。
输入格式
第一行包含整数 n,表示树的结点数。
接下来 n−1 行,每行包含两个整数 a 和 b,表示点 a 和点 b 之间存在一条边。
输出格式
输出一个整数 m,表示将重心删除后,剩余各个连通块中点数的最大值。
数据范围
1≤n≤105
输入样例
9
1 2
1 7
1 4
2 8
2 5
4 3
3 9
4 6
输出样例:
4
先画出题目给出的树:
解释一下什么是树的重心
树的重心是指,删除某个结点后剩下的最大连通子树的结点数目最小,如上图是根据样列生成的树
若删除结点1,则剩下三个子树最大的是中间那颗结点有4个,即剩下的最大连通子树的结点数目为4;
若删除结点2,则剩下两个数目为1的子树和一个数目为6的子树,即剩下的最大连通子树的结点数目为6;
若删除结点3,剩下一个数目为1的子树,和一个数目为7的子树,即剩下的最大连通子树的结点数目为7……
枚举可得剩下的最小的最大连通子树的结点数目为4也就是说结点1是树的重心。另外注意题目要求答案是输出剩下的最小的最大连通子树的结点数目。
思路:树的深搜
算出每个结点被删除后剩下的最大连通子树的结点数目,输出最小值即可,那么问题就是怎么求一个结点被删除后的最大连通子树的结点数目,删除一个结点后,剩下的子树可以被分为两个部分,例如删除结点4:
蓝色部分是结点4的子树,红色部分我们暂时称为其他部门,因为我们知道树的总结点数n,只要能算出蓝色部分的数目s,那么其他部分的数目就是n-s
代码如何实现
一是这颗树我们要怎么存储,
二是上述dfs怎么实现
树的存储
首先树是一种特殊的图(无向图),存储图有邻接矩阵法和邻接表法,这里选择邻接表法,另外这里的是无向图,所以存边的时候要存正反两条。
存储代码实现:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1e5 + 10; //数据范围是10的5次方
const int M = 2 * N; //以有向图的格式存储无向图,所以每个节点至多对应2n-2条边
int h[N]; //邻接表存储树,有n个节点,所以需要n个队列头节点
int e[M]; //存储元素
int ne[M]; //存储列表的next值
int idx; //单链表指针
int n; //题目所给的输入,n个节点
//a所对应的单链表中插入b a作为根
void add(int a, int b) {
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
int main() {
memset(h, -1, sizeof h); //初始化h数组 -1表示尾节点
cin >> n; //表示树的结点数
// 题目接下来会输入,n-1行数据,
// 树中是不存在环的,对于有n个节点的树,必定是n-1条边
for (int i = 0; i < n - 1; i++) {
int a, b;
cin >> a >> b;
add(a, b), add(b, a); //无向图
}
// 打印邻接表
for(int i =1; i <= n ; i ++)
{
cout << i << ": ";
for(int j = h[i]; j != -1; j = ne[j])
cout << "->" << e[j];
cout << endl;
}
return 0;
}
原始无向图:
运行结果:
最后dfs 是怎么实现的,只需要在深搜中统计当前节点子树的个数,然后判断出最小的最大连通子树节点数目
如图:可以按照题目意思,求出每个点删除后的最大值是多少, 然后求这些最大值中的最小值
在树的深度优先遍历中,可以求出每个子树的点的数量的文章来源:https://www.toymoban.com/news/detail-414141.html
code:文章来源地址https://www.toymoban.com/news/detail-414141.html
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1e5 + 10; //数据范围是10的5次方
const int M = 2 * N; //以有向图的格式存储无向图,所以每个节点至多对应2n-2条边
int h[N]; //邻接表存储树,有n个节点,所以需要n个队列头节点
int e[M]; //存储元素
int ne[M]; //存储列表的next值
int idx; //单链表指针
int n; //题目所给的输入,n个节点
int ans = N; //表示重心的所有的子树中,最大的子树的结点数目
bool st[N]; //记录节点是否被访问过,访问过则标记为true
//a所对应的单链表中插入b a作为根
//将b插入a中 a作为根 所以处在链表的最后
void add(int a, int b) {
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
// dfs 框架
/*
void dfs(int u){
st[u]=true; // 标记一下,记录为已经被搜索过了,下面进行搜索过程
for(int i=h[u];i!=-1;i=ne[i]){
int j=e[i];
if(!st[j]) {
dfs(j);
}
}
}
*/
//返回以u为根的子树中节点的个数,包括u节点
int dfs(int u) {
int res = 0; //存储 删掉某个节点之后,最大的连通子图节点数
st[u] = true; //标记访问过u节点
// sum用于记录根子树的个数
int sum = 1; //存储 以u为根的树 的节点数, 包括u,如图中的4号节点
//访问u的每个子节点
for (int i = h[u]; i != -1; i = ne[i]) {
int j = e[i];
//因为每个节点的编号都是不一样的,所以 用编号为下标 来标记是否被访问过
if (!st[j]) {
int s = dfs(j); // u节点的单棵子树节点数 如图中的size值
res = max(res, s); // 记录最大联通子图的节点数
sum += s; //以j为根的树 的节点数
}
}
//n-sum 如图中的n-size值,不包括根节点4;
res = max(res, n - sum); // 选择u节点为重心,最大的 连通子图节点数
ans = min(res, ans); //遍历过的假设重心中,最小的最大联通子图的 节点数
return sum;
}
int main() {
memset(h, -1, sizeof h); //初始化h数组 -1表示尾节点
cin >> n; //表示树的结点数
// 题目接下来会输入,n-1行数据,
// 树中是不存在环的,对于有n个节点的树,必定是n-1条边
for (int i = 0; i < n - 1; i++) {
int a, b;
cin >> a >> b;
add(a, b), add(b, a); //无向图
}
dfs(1); //可以任意选定一个节点开始 u<=n
cout << ans << endl;
return 0;
}
到了这里,关于acwing 846. 树的重心的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!