VAE 理论推导及代码实现
熵、交叉熵、KL 散度的概念
熵(Entropy)
假设 p (x)是一个分布函数,满足在 x 上的积分为 1,那么
p
(
x
)
p(x)
p(x)的熵定义为
H
(
p
(
x
)
)
H (p (x))
H(p(x)),这里我们简写为
H
(
p
)
H(p)
H(p)
H
(
p
)
=
∫
p
(
x
)
log
1
p
(
x
)
d
x
H(p)=\int p(x) \log \frac{1}{p(x)} dx
H(p)=∫p(x)logp(x)1dx
直观上,越分散的分布函数熵越大。越集中的分布函数熵越小。熵的最小值为 0.
从信息论的角度来说,熵又叫信息熵,它的大小表示信息量的多少,分散的分布函数可能性多、拿到 p (x)后对于 x 的推断不确定性大,即信息量大,而对于 p © =1 这种情况拿到分布函数直接就拿到了结果,因此信息量为 0
交叉熵(Cross-Entropy)
假设
p
(
x
)
p(x)
p(x)、
q
(
x
)
q(x)
q(x)是两个分布函数,交叉熵的小大评价了这两个分布函数的相似与否。
p
p
p 和
q
q
q 的交叉熵记为
H
(
p
,
q
)
H(p, q)
H(p,q)
H
(
p
,
q
)
=
∫
p
(
x
)
log
1
q
(
x
)
d
x
H(p, q)=\int p(x) \log \frac{1}{q(x)} d x
H(p,q)=∫p(x)logq(x)1dx
交叉熵小一分布相似;交叉熵大一分布不相似。交叉熵最大为无穷大,最小为 p p p 的熵 H ( p ) H (p) H(p)
KL 散度
假设
p
(
x
)
p(x)
p(x)、
q
(
x
)
q (x)
q(x)是两个分布函数,KL 散度的小大评价了这两个分布函数的相似与否,同时考虑了
K
L
(
x
)
KL(x)
KL(x)这个分布的信息量。记为
K
L
(
p
,
q
)
KL(p, q)
KL(p,q)。注意:
K
L
(
p
,
q
)
KL (p, q)
KL(p,q)也不一定等于
K
L
(
q
,
p
)
KL (q, p)
KL(q,p)。
K
L
(
p
,
q
)
=
H
(
p
,
q
)
−
H
(
p
)
K L(p, q)=H(p, q)-H(p)
KL(p,q)=H(p,q)−H(p)
∫
p
(
x
)
log
1
q
(
x
)
d
x
−
∫
p
(
x
)
log
1
p
(
x
)
d
x
=
∫
p
(
x
)
log
p
(
x
)
q
(
x
)
d
x
\begin{aligned} & \int p(x) \log \frac{1}{q(x)} d x-\int p(x) \log \frac{1}{p(x)} d x \\ & =\int p(x) \log \frac{p(x)}{q(x)} d x \end{aligned}
∫p(x)logq(x)1dx−∫p(x)logp(x)1dx=∫p(x)logq(x)p(x)dx
KL散度小—分布相似 &
[
p
(
x
)
[p(x)
[p(x) 分散 |
p
(
x
)
p(x)
p(x) 信息量大]。
K
L
\mathrm{KL}
KL 散度大–分布不相似 &
[
p
(
x
)
[p(x)
[p(x) 集中
∣
p
(
x
)
\mid p(x)
∣p(x) 信息量小]。
K
L
\mathrm{KL}
KL 散度最小值为
0
:
p
(
x
)
0: p(x)
0:p(x) 和
q
(
x
)
q(x)
q(x) 完全相同时。
概率知识
将p(x)其改写为包含了传入参数的形式
p
(
x
)
=
∑
z
p
(
x
∣
z
)
p
(
z
)
p(x)=\sum_z p(x \mid z) p(z)
p(x)=z∑p(x∣z)p(z)
连续分布时,该式就变成了
p
(
x
)
=
∫
z
p
(
x
∣
z
)
p
(
z
)
d
z
p(x)=\int_z^{\operatorname{}} p(x \mid z) p(z) d z
p(x)=∫zp(x∣z)p(z)dz
p ( z ) p(z) p(z)可以是任意分布,在VAE中我们常常假设p(z)服从标准正态分布。
变分方法
Intractability:
p
θ
(
z
∣
x
)
=
p
θ
(
x
∣
z
)
p
θ
(
z
)
/
p
θ
(
x
)
p
θ
(
x
)
=
∫
p
θ
(
z
)
p
θ
(
x
˙
∣
z
)
d
z
\begin{aligned} p_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x}) & =p_{\boldsymbol{\theta}}(\mathbf{x} \mid \mathbf{z}) p_{\boldsymbol{\theta}}(\mathbf{z}) / p_{\boldsymbol{\theta}}(\mathbf{x}) \\ p_{\boldsymbol{\theta}}(\mathbf{x}) & =\int p_{\boldsymbol{\theta}}(\mathbf{z}) p_{\boldsymbol{\theta}}(\dot{\mathbf{x}} \mid \mathbf{z}) d \mathbf{z} \end{aligned}
pθ(z∣x)pθ(x)=pθ(x∣z)pθ(z)/pθ(x)=∫pθ(z)pθ(x˙∣z)dz
p
(
z
∣
x
(
i
)
)
=
p
(
z
,
x
(
i
)
)
p
(
x
(
i
)
)
=
p
(
x
=
x
(
i
)
∣
z
=
z
(
i
)
)
p
(
z
=
z
(
i
)
)
∫
z
(
i
)
p
(
x
=
x
(
i
)
∣
z
=
z
(
i
)
)
p
(
z
=
z
(
i
)
)
d
z
(
i
)
=
p
(
x
(
i
)
∣
z
)
p
(
z
)
∫
z
p
(
x
(
i
)
∣
z
)
p
(
z
)
d
z
\begin{aligned} p\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) & =\frac{p\left(\mathbf{z}, \mathbf{x}^{(i)}\right)}{p\left(\mathbf{x}^{(i)}\right)} \\ & =\frac{p\left(\mathbf{x}=\mathbf{x}^{(i)} \mid \mathbf{z}=\mathbf{z}^{(i)}\right) p\left(\mathbf{z}=\mathbf{z}^{(i)}\right)}{\int_{\mathbf{z}^{(i)}} p\left(\mathbf{x}=\mathbf{x}^{(i)} \mid \mathbf{z}=\mathbf{z}^{(i)}\right) p\left(\mathbf{z}=\mathbf{z}^{(i)}\right) d \mathbf{z}^{(i)}} \\ & =\frac{p\left(\mathbf{x}^{(i)} \mid \mathbf{z}\right) p(\mathbf{z})}{\int_{\mathbf{z}} p\left(\mathbf{x}^{(i)} \mid \mathbf{z}\right) p(\mathbf{z}) d \mathbf{z}} \end{aligned}
p(z∣x(i))=p(x(i))p(z,x(i))=∫z(i)p(x=x(i)∣z=z(i))p(z=z(i))dz(i)p(x=x(i)∣z=z(i))p(z=z(i))=∫zp(x(i)∣z)p(z)dzp(x(i)∣z)p(z)
参考:https://zhuanlan.zhihu.com/p/519448634
如果假设参数 θ \theta θ 已知, 那么先验分布 p θ ( z ) p_\theta(\mathbf{z}) pθ(z) 和条件似然函数 p θ ( x ( i ) ∣ z ) p_\theta\left(\mathbf{x}^{(i)} \mid \mathbf{z}\right) pθ(x(i)∣z) 就都是已知的。理论上 来说, 只要把分母里的积分项 ∫ z p θ ( x ( i ) ∣ z ) p ( z ) d z \int_{\mathbf{z}} p_\theta\left(\mathbf{x}^{(i)} \mid \mathbf{z}\right) p(\mathbf{z}) d \mathbf{z} ∫zpθ(x(i)∣z)p(z)dz 计算出来, 那整个后验分布 p ( z ∣ x ( i ) ) p\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) p(z∣x(i)) 就 可以求了, 后验推断问题也就解决了。但是, 现实很骨感, 在没有对 p θ ( z ) p_\theta(\mathbf{z}) pθ(z) 和 p θ ( x ( i ) ∣ z ) p_\theta\left(\mathbf{x}^{(i)} \mid \mathbf{z}\right) pθ(x(i)∣z) 作任何 简化假设的前提下, 这个积分基本上是没有解析解的。你想硬着头皮解, 那么基本意味着你要穷举 隐变量 z \mathbf{z} z 的所有可能取值, 假设 z \mathbf{z} z 有 k k k 个维度, 每个维度采样 n n n 个取值, 那么这个穷举过程的复 杂度就是 O ( n k ) O\left(n^k\right) O(nk) 。
当然也有人用MCMC来做积分项的估计,虽然这个方案做采样估计很精准,但是费时费力,很难适用于大数据场景。所以一般更常见的方案是采用变分方法(variational method),它可以绕过对积分项的求解,通过把统计推断问题转化成参数优化问题来实现“降维打击”。
首先变分方法会设置一个新的参数化分布 q ϕ ( z ∣ x ( i ) ) q_\phi\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) qϕ(z∣x(i)), 它的参数是 ϕ \phi ϕ, 我们把它称作"识别模型" (原文记作recognition model) 。变分方法的核心思想是:直接让“识别模型”去拟合后验分布 p θ ( z ∣ x ( i ) ) p_\theta\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) pθ(z∣x(i)), 只要近似到位, 那么采用 q ϕ ( z ∣ x ( i ) ) q_\phi\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) qϕ(z∣x(i)) 作为后验推断的结果就行了。如何做近似呢? 很简单, 直接最小化 q ϕ ( z ∣ x ( i ) ) q_\phi\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) qϕ(z∣x(i)) 和 p θ ( z ∣ x ( i ) ) p_\theta\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) pθ(z∣x(i)) 两者间的KL散度即可。
就这样,变分方法把原来的统计推断问题转化成了优化问题:
Approximation
p
θ
(
z
∣
x
)
≅
q
ϕ
(
z
∣
x
)
\quad p_\theta(z \mid x) \cong q_\phi(z \mid x)
pθ(z∣x)≅qϕ(z∣x)
D
K
L
(
q
ϕ
(
z
∣
x
)
∥
p
θ
(
z
∣
x
)
)
=
−
∑
decoder
q
ϕ
(
z
∣
x
)
log
(
p
θ
(
z
∣
x
)
q
ϕ
(
z
∣
x
)
)
=
−
∑
z
q
ϕ
(
z
∣
x
)
log
(
p
θ
(
x
,
z
)
p
θ
(
x
)
q
ϕ
(
z
∣
x
)
)
=
−
∑
z
q
ϕ
(
z
∣
x
)
[
log
(
p
θ
(
x
,
z
)
q
ϕ
(
z
∣
x
)
)
−
log
(
p
θ
(
x
)
)
‾
]
non-negative
log
(
p
θ
(
x
)
)
=
K
L
(
q
ϕ
(
z
∣
x
)
∥
p
θ
(
z
∣
x
)
)
+
∑
z
q
ϕ
(
z
∣
x
)
log
(
p
θ
(
x
,
z
)
q
ϕ
(
z
∣
x
)
)
=
D
K
L
(
q
ϕ
(
z
∣
x
)
∣
∣
p
θ
(
z
∣
x
)
)
+
L
(
θ
,
ϕ
;
x
)
Variational lower bound
\begin{aligned} & D_{K L}\left(q_\phi(z \mid x) \| p_\theta(z \mid x)\right)=-\sum_{\text {decoder }} q_\phi(z \mid x) \log \left(\frac{p_\theta(z \mid x)}{q_\phi(z \mid x)}\right)=-\sum_z q_\phi(z \mid x) \log \left(\frac{\frac{p_\theta(x, z)}{p_\theta(x)}}{q_\phi(z \mid x)}\right) \\ & =-\sum_z q_\phi(z \mid x)\left[\log \left(\frac{p_\theta(x, z)}{q_\phi(z \mid x)}\right)-\underline{\log \left(p_\theta(x)\right)}\right] \\ & \begin{array}{c} \text { non-negative } \\ \log \left(p_\theta(x)\right) \end{array}=K L\left(q_\phi(z \mid x) \| p_\theta(z \mid x)\right)+\sum_z q_\phi(z \mid x) \log \left(\frac{p_\theta(x, z)}{q_\phi(z \mid x)}\right) \\ & =D_{K L}\left(q_\phi(z \mid x)|| p_\theta(z \mid x)\right)+\frac{L(\theta, \phi ; x)}{\text { Variational lower bound }} \\ & \end{aligned}
DKL(qϕ(z∣x)∥pθ(z∣x))=−decoder ∑qϕ(z∣x)log(qϕ(z∣x)pθ(z∣x))=−z∑qϕ(z∣x)log
qϕ(z∣x)pθ(x)pθ(x,z)
=−z∑qϕ(z∣x)[log(qϕ(z∣x)pθ(x,z))−log(pθ(x))] non-negative log(pθ(x))=KL(qϕ(z∣x)∥pθ(z∣x))+z∑qϕ(z∣x)log(qϕ(z∣x)pθ(x,z))=DKL(qϕ(z∣x)∣∣pθ(z∣x))+ Variational lower bound L(θ,ϕ;x)
Maximize the lower bound
L
(
θ
,
ϕ
;
x
)
=
∑
z
q
ϕ
(
z
∣
x
)
log
(
p
θ
(
x
,
z
)
q
ϕ
(
z
∣
x
)
)
=
∑
z
q
ϕ
(
z
∣
x
)
log
(
p
θ
(
x
∣
z
)
p
θ
(
z
)
q
ϕ
(
z
∣
x
)
)
=
∑
z
q
ϕ
(
z
∣
x
)
[
log
(
p
θ
(
x
∣
z
)
)
+
log
(
p
θ
(
z
)
q
ϕ
(
z
∣
x
)
)
]
=
E
q
ϕ
(
z
∣
x
)
[
log
(
p
θ
(
x
∣
z
)
)
]
Reconstruction Loss
−
D
K
L
(
q
ϕ
(
z
∣
x
)
∥
p
θ
(
z
)
)
Regularization Loss
\begin{aligned} & L(\theta, \phi ; x)=\sum_z q_\phi(z \mid x) \log \left(\frac{p_\theta(x, z)}{q_\phi(z \mid x)}\right)=\sum_z q_\phi(z \mid x) \log \left(\frac{p_\theta(x \mid z) p_\theta(z)}{q_\phi(z \mid x)}\right) \\ &= \sum_z q_\phi(z \mid x)\left[\log \left(p_\theta(x \mid z)\right)+\log \left(\frac{p_\theta(z)}{q_\phi(z \mid x)}\right)\right] \\ &= \frac{E_{q_\phi(z \mid x)}\left[\log \left(p_\theta(x \mid z)\right)\right]}{\text { Reconstruction Loss }}-\frac{D_{K L}\left(q_\phi(z \mid x) \| p_\theta(z)\right)}{\text { Regularization Loss }} \end{aligned}
L(θ,ϕ;x)=z∑qϕ(z∣x)log(qϕ(z∣x)pθ(x,z))=z∑qϕ(z∣x)log(qϕ(z∣x)pθ(x∣z)pθ(z))=z∑qϕ(z∣x)[log(pθ(x∣z))+log(qϕ(z∣x)pθ(z))]= Reconstruction Loss Eqϕ(z∣x)[log(pθ(x∣z))]− Regularization Loss DKL(qϕ(z∣x)∥pθ(z))
L ( θ , ϕ ; x ) = ∑ z q ϕ ( z ∣ x ) log ( p θ ( x , z ) q ϕ ( z ∣ x ) ) = ∑ z q ϕ ( z ∣ x ) log ( p θ ( x ∣ z ) p θ ( z ) q ϕ ( z ∣ x ) ) = ∑ z q ϕ ( z ∣ x ) [ log ( p θ ( x ∣ z ) ) + log ( p θ ( z ) q ϕ ( z ∣ x ) ) ] \begin{gathered} L(\theta, \phi ; x)=\sum_z q_\phi(z \mid x) \log \left(\frac{p_\theta(x, z)}{q_\phi(z \mid x)}\right)=\sum_z q_\phi(z \mid x) \log \left(\frac{p_\theta(x \mid z) p_\theta(z)}{q_\phi(z \mid x)}\right) \\ =\sum_z q_\phi(z \mid x)\left[\log \left(p_\theta(x \mid z)\right)+\log \left(\frac{p_\theta(z)}{q_\phi(z \mid x)}\right)\right] \end{gathered} L(θ,ϕ;x)=z∑qϕ(z∣x)log(qϕ(z∣x)pθ(x,z))=z∑qϕ(z∣x)log(qϕ(z∣x)pθ(x∣z)pθ(z))=z∑qϕ(z∣x)[log(pθ(x∣z))+log(qϕ(z∣x)pθ(z))]
Regularization Loss( 重参数化)
而在实践中, 一般不对 q ϕ ( z ∣ x ( i ) ) q_\phi\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) qϕ(z∣x(i)) 直接作采样, 采用 reparameterization trick 来简化操作, 我们 设 z ( i , l ) = g ϕ ( ϵ ( i ; l ) ; x ( i ) ) \mathbf{z}^{(i, l)}=g_\phi\left(\epsilon^{(i ; l)} ; \mathbf{x}^{(i)}\right) z(i,l)=gϕ(ϵ(i;l);x(i)), 其中 g ϕ g_\phi gϕ 是一个拟合函数 (e.g. 神经网络) , 而噪声 ϵ ( i ; l ) \epsilon^{(i ; l)} ϵ(i;l) 可以通过 采样得到, 一般直接采样自简单的标准正态分布。
∫
q
θ
(
z
∣
x
)
log
p
(
z
)
d
z
=
∫
N
(
z
;
μ
,
σ
2
)
log
N
(
z
;
0
,
I
)
d
z
\int q_\theta(z \mid x) \log p(z) d z=\int N\left(z ; \mu, \sigma^2\right) \log N(z ; 0, I) dz
∫qθ(z∣x)logp(z)dz=∫N(z;μ,σ2)logN(z;0,I)dz
f
(
x
)
=
1
σ
2
π
e
−
1
2
(
x
−
μ
σ
)
2
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}
f(x)=σ2π1e−21(σx−μ)2
= ∫ N ( z ; μ , σ 2 ) ( − 1 2 z 2 − 1 2 log ( 2 π ) ) d z = − 1 2 ∫ N ( z ; μ , σ 2 ) z 2 d z − J 2 log ( 2 π ) = − J 2 log ( 2 π ) − 1 2 E z ∼ N ( z ; μ , σ 2 ) [ Z 2 ] = − J 2 log ( 2 π ) − 1 2 ( E z ∼ N ( z ; μ , σ 2 ) [ Z ] 2 + Var ( Z ) ) = − J 2 log ( 2 π ) − 1 2 ∑ j = 1 J ( μ j 2 + σ j 2 ) Let J be the dimensionality of z \begin{aligned} & =\int N\left(z ; \mu, \sigma^2\right)\left(-\frac{1}{2} z^2-\frac{1}{2} \log (2 \pi)\right) d z=-\frac{1}{2} \int N\left(z ; \mu, \sigma^2\right) z^2 d z-\frac{J}{2} \log (2 \pi) \\ & =-\frac{J}{2} \log (2 \pi)-\frac{1}{2} E_{z \sim N\left(z ; \mu, \sigma^2\right)}\left[Z^2\right] \\ & =-\frac{J}{2} \log (2 \pi)-\frac{1}{2}\left(E_{z \sim N\left(z ; \mu, \sigma^2\right)}[Z]^2+\operatorname{Var}(Z)\right) \\ & =-\frac{J}{2} \log (2 \pi)-\frac{1}{2} \sum_{j=1}^J\left(\mu_j^2+\sigma_j^2\right) \quad \text { Let } J \text { be the dimensionality of } z \end{aligned} =∫N(z;μ,σ2)(−21z2−21log(2π))dz=−21∫N(z;μ,σ2)z2dz−2Jlog(2π)=−2Jlog(2π)−21Ez∼N(z;μ,σ2)[Z2]=−2Jlog(2π)−21(Ez∼N(z;μ,σ2)[Z]2+Var(Z))=−2Jlog(2π)−21j=1∑J(μj2+σj2) Let J be the dimensionality of z
L1用于最小化
K
L
(
q
(
z
∣
x
)
∣
∣
p
(
z
)
)
KL(q(z|x) || p(z))
KL(q(z∣x)∣∣p(z)),VAE假设
q
(
z
∣
x
)
q(z|x)
q(z∣x)的分布为正态分布,而
p
(
z
)
p(z)
p(z)为标准正态分布。计算两个正态分布之间的KL散度的公式如下:
K
L
(
N
(
μ
1
,
σ
1
2
)
,
N
(
μ
2
,
σ
2
2
)
)
=
log
σ
2
σ
1
+
σ
1
2
+
(
μ
1
−
μ
2
)
2
2
σ
2
2
−
1
2
K L\left(N\left(\mu_1, \sigma_1^2\right), N\left(\mu_2, \sigma_2^2\right)\right)=\log \frac{\sigma_2}{\sigma_1}+\frac{\sigma_1^2+\left(\mu_1-\mu_2\right)^2}{2 \sigma_2^2}-\frac{1}{2}
KL(N(μ1,σ12),N(μ2,σ22))=logσ1σ2+2σ22σ12+(μ1−μ2)2−21
由于此处p(z)为标准正态分布,因此其μ为0,σ为1,那么我们带入后可得
L
1
=
−
1
2
(
log
σ
2
−
σ
2
−
μ
2
+
1
)
L_1=-\frac{1}{2}\left(\log \sigma^2-\sigma^2-\mu^2+1\right)
L1=−21(logσ2−σ2−μ2+1)
采用reparameterization trick有两大好处:
- 由于分布 q ϕ ( z ∣ x ( i ) ) q_\phi\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) qϕ(z∣x(i)) 可能是一个比较复杂的函数, 直接采样操作费时费力, 而且采样方差可能很 大, 不利于收玫, 通过reparameterization可以简化操作, 提高效率, 提高数值上的稳定性;
- 假设我们不考虑采样难度, 直接对 q ϕ ( z ∣ x ( i ) ) q_\phi\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) qϕ(z∣x(i)) 采样, 那么梯度反向传播的时候, 损失函数中的 1 L ∑ l = 1 L [ log p θ ( x ( i ) ∣ z ( i , l ) ) ] \frac{1}{L} \sum_{l=1}^L\left[\log p_\theta\left(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i, l)}\right)\right] L1∑l=1L[logpθ(x(i)∣z(i,l))] 是没法对 ϕ \phi ϕ 求导的, 这样损失函数 L ( ϕ , θ , x ( i ) ) \mathcal{L}\left(\phi, \theta, \mathbf{x}^{(\mathbf{i})}\right) L(ϕ,θ,x(i)) 只能通过KL散度 的梯度对 ϕ \phi ϕ 做优化, 这和我们做联合参数优化的意图是违背的。所以使用reparameterization trick 让 z ( i , l ) = g ϕ ( ϵ ( i ; l ) ; x ( i ) ) \mathbf{z}^{(i, l)}=g_\phi\left(\epsilon^{(i ; l)} ; \mathbf{x}^{(i)}\right) z(i,l)=gϕ(ϵ(i;l);x(i)), 实际上是让参数 θ , ϕ \theta, \phi θ,ϕ 可以同时得到期望项和KL散度项的反传 梯度进行优化, 让模型学得更好。
Reconstruction Loss
L ( θ , ϕ ; x ( i ) ) = − D K L ( q ϕ ( z ∣ x ( i ) ) ∥ p θ ( z ) ) ‾ + E q ϕ ( z ∣ x ( i ) ) [ log p θ ( x ( i ) ∣ z ) ] ‾ − D K L ( ( q ϕ ( z ) ∥ p θ ( z ) ) = ∫ q θ ( z ) ( log p θ ( z ) − log q θ ( z ) ) d z = 1 2 ∑ j = 1 J ( 1 + log ( ( σ j ) 2 ) − ( μ j ) 2 − ( σ j ) 2 ) f ∗ = arg max f ∈ F E z ∼ q x ∗ ( log p ( x ∣ z ) ) = arg max f ∈ F E z ∼ q x ∗ ( − ∥ x − f ( z ) ∥ 2 2 c ) \begin{aligned} & \mathcal{L}\left(\boldsymbol{\theta}, \boldsymbol{\phi} ; \mathbf{x}^{(i)}\right)=\underline{-D_{K L}\left(q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) \| p_{\boldsymbol{\theta}}(\mathbf{z})\right)}+\underline{\mathbb{E}_{q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right)}\left[\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)} \mid \mathbf{z}\right)\right]} \\ & -D_{K L}\left(\left(q_{\boldsymbol{\phi}}(\mathbf{z}) \| p_{\boldsymbol{\theta}}(\mathbf{z})\right)=\int q_{\boldsymbol{\theta}}(\mathbf{z})\left(\log p_{\boldsymbol{\theta}}(\mathbf{z})-\log q_{\boldsymbol{\theta}}(\mathbf{z})\right) d \mathbf{z}\right. \\ & =\frac{1}{2} \sum_{j=1}^J\left(1+\log \left(\left(\sigma_j\right)^2\right)-\left(\mu_j\right)^2-\left(\sigma_j\right)^2\right) \\ & f^*=\underset{f \in F}{\arg \max } \mathbb{E}_{z \sim q_x^*}(\log p(x \mid z)) \\ & =\underset{f \in F}{\arg \max } \mathbb{E}_{z \sim q_x^*}\left(-\frac{\|x-f(z)\|^2}{2 c}\right) \\ & \end{aligned} L(θ,ϕ;x(i))=−DKL(qϕ(z∣x(i))∥pθ(z))+Eqϕ(z∣x(i))[logpθ(x(i)∣z)]−DKL((qϕ(z)∥pθ(z))=∫qθ(z)(logpθ(z)−logqθ(z))dz=21j=1∑J(1+log((σj)2)−(μj)2−(σj)2)f∗=f∈FargmaxEz∼qx∗(logp(x∣z))=f∈FargmaxEz∼qx∗(−2c∥x−f(z)∥2)
L
(
θ
,
ϕ
;
x
(
i
)
)
=
−
D
K
L
(
q
ϕ
(
z
∣
x
(
i
)
)
∥
p
θ
(
z
)
)
+
E
q
ϕ
(
z
∣
x
(
i
)
)
[
log
p
θ
(
x
(
i
)
∣
z
)
]
\mathcal{L}\left(\boldsymbol{\theta}, \boldsymbol{\phi} ; \mathbf{x}^{(i)}\right)=-D_{K L}\left(q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) \| p_{\boldsymbol{\theta}}(\mathbf{z})\right)+\mathbb{E}_{q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right)}\left[\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)} \mid \mathbf{z}\right)\right]
L(θ,ϕ;x(i))=−DKL(qϕ(z∣x(i))∥pθ(z))+Eqϕ(z∣x(i))[logpθ(x(i)∣z)]
文章来源:https://www.toymoban.com/news/detail-414145.html
import argparse
import torch
import torch.utils.data
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
parser = argparse.ArgumentParser(description='VAE MNIST Example with Different Losses')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=100, metavar='N',
help='number of epochs to train (default: 100)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100000, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if args.cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./datasets', train=True, download=True,
transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./datasets', train=False, transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=True, **kwargs)
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.fc1 = nn.Linear(784, 400)
self.fc21 = nn.Linear(400, 20)
self.fc22 = nn.Linear(400, 20)
self.fc3 = nn.Linear(20, 400)
self.fc4 = nn.Linear(400, 784)
def encode(self, x):
h1 = F.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std
def decode(self, z):
h3 = F.relu(self.fc3(z))
return torch.sigmoid(self.fc4(h3))
def forward(self, x):
mu, logvar = self.encode(x.view(-1, 784))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
model = VAE().to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)
### 1.
# Reconstruction + KL divergence losses summed over all elements and batch
def loss_function_original(recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
### 2.
# using the loss function which only consider reconstruction term.
def loss_function_only_recon(recon_x, x):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
return BCE
### 3.
# be careful of the way two losses calculated.
# the only difference of this loss function is that the second term - KLD
# is "mean".
def loss_function_o1(recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
KLD = -0.5 * torch.mean(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
### 4.
def loss_function_o2(recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='mean')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
### 5.
def loss_function_kld(recon_x, x, mu, logvar):
KLD = -0.5 * torch.mean(1 + logvar - mu.pow(2) - logvar.exp())
return KLD
### 6.
# apply the l1 loss
def loss_function_l1(recon_x, x, mu, logvar):
L1 = F.l1_loss(recon_x, x.view(-1, 784), reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return L1 + KLD
### 7.
# apply the MSE loss
def loss_function_l2(recon_x, x, mu, logvar):
L1 = F.mse_loss(recon_x, x.view(-1, 784), reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return L1 + KLD
def train(epoch):
model.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
data = data.to(device)
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
which_loss = 7
if which_loss==1:
loss = loss_function_original(recon_batch, data, mu, logvar)
elif which_loss==2:
loss = loss_function_only_recon(recon_batch, data)
elif which_loss==3:
loss = loss_function_o1(recon_batch, data, mu, logvar)
elif which_loss==4:
loss = loss_function_o2(recon_batch, data, mu, logvar)
elif which_loss==5:
loss = loss_function_kld(recon_batch, data, mu, logvar)
elif which_loss==6:
loss = loss_function_l1(recon_batch, data, mu, logvar)
elif which_loss==7:
loss = loss_function_l2(recon_batch, data, mu, logvar)
loss.backward()
train_loss += loss.item()
optimizer.step()
print('====> Epoch: {} Average loss: {:.4f}'.format(epoch, train_loss / len(train_loader.dataset)))
def test(epoch):
model.eval()
with torch.no_grad():
for i, (data, _) in enumerate(test_loader):
data = data.to(device)
recon_batch, mu, logvar = model(data)
if (i == 0) and (epoch % 10 == 0):
n = min(data.size(0), 8)
comparison = torch.cat([data[:n],
recon_batch.view(args.batch_size, 1, 28, 28)[:n]])
save_image(comparison.cpu(),
'vae_img/7_m_reconstruction_' + str(epoch) + '.png', nrow=n)
if __name__ == "__main__":
for epoch in range(1, args.epochs + 1):
train(epoch)
test(epoch)
if epoch%10 == 0:
with torch.no_grad():
sample = torch.randn(64, 20).to(device)
sample = model.decode(sample).cpu()
save_image(sample.view(64, 1, 28, 28),
'vae_img/7_m_sample_' + str(epoch) + '.png')
参考
https://zhuanlan.zhihu.com/p/345360992文章来源地址https://www.toymoban.com/news/detail-414145.html
到了这里,关于VAE 理论推导及代码实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!