VAE 理论推导及代码实现

这篇具有很好参考价值的文章主要介绍了VAE 理论推导及代码实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

VAE 理论推导及代码实现

熵、交叉熵、KL 散度的概念

熵(Entropy)

假设 p (x)是一个分布函数,满足在 x 上的积分为 1,那么 p ( x ) p(x) p(x)的熵定义为 H ( p ( x ) ) H (p (x)) H(p(x)),这里我们简写为 H ( p ) H(p) H(p)
H ( p ) = ∫ p ( x ) log ⁡ 1 p ( x ) d x H(p)=\int p(x) \log \frac{1}{p(x)} dx H(p)=p(x)logp(x)1dx
直观上,越分散的分布函数熵越大。越集中的分布函数熵越小。熵的最小值为 0.

从信息论的角度来说,熵又叫信息熵,它的大小表示信息量的多少,分散的分布函数可能性多、拿到 p (x)后对于 x 的推断不确定性大,即信息量大,而对于 p © =1 这种情况拿到分布函数直接就拿到了结果,因此信息量为 0

交叉熵(Cross-Entropy)

假设 p ( x ) p(x) p(x) q ( x ) q(x) q(x)是两个分布函数,交叉熵的小大评价了这两个分布函数的相似与否。 p p p q q q 的交叉熵记为 H ( p , q ) H(p, q) H(p,q)
H ( p , q ) = ∫ p ( x ) log ⁡ 1 q ( x ) d x H(p, q)=\int p(x) \log \frac{1}{q(x)} d x H(p,q)=p(x)logq(x)1dx

交叉熵小一分布相似;交叉熵大一分布不相似。交叉熵最大为无穷大,最小为 p p p 的熵 H ( p ) H (p) H(p)

KL 散度

假设 p ( x ) p(x) p(x) q ( x ) q (x) q(x)是两个分布函数,KL 散度的小大评价了这两个分布函数的相似与否,同时考虑了 K L ( x ) KL(x) KL(x)这个分布的信息量。记为 K L ( p , q ) KL(p, q) KL(p,q)。注意: K L ( p , q ) KL (p, q) KL(p,q)也不一定等于 K L ( q , p ) KL (q, p) KL(q,p)
K L ( p , q ) = H ( p , q ) − H ( p ) K L(p, q)=H(p, q)-H(p) KL(p,q)=H(p,q)H(p)
∫ p ( x ) log ⁡ 1 q ( x ) d x − ∫ p ( x ) log ⁡ 1 p ( x ) d x = ∫ p ( x ) log ⁡ p ( x ) q ( x ) d x \begin{aligned} & \int p(x) \log \frac{1}{q(x)} d x-\int p(x) \log \frac{1}{p(x)} d x \\ & =\int p(x) \log \frac{p(x)}{q(x)} d x \end{aligned} p(x)logq(x)1dxp(x)logp(x)1dx=p(x)logq(x)p(x)dx

KL散度小—分布相似 & [ p ( x ) [p(x) [p(x) 分散 | p ( x ) p(x) p(x) 信息量大]。
K L \mathrm{KL} KL 散度大–分布不相似 & [ p ( x ) [p(x) [p(x) 集中 ∣ p ( x ) \mid p(x) p(x) 信息量小]。
K L \mathrm{KL} KL 散度最小值为 0 : p ( x ) 0: p(x) 0:p(x) q ( x ) q(x) q(x) 完全相同时。

概率知识

将p(x)其改写为包含了传入参数的形式
p ( x ) = ∑ z p ( x ∣ z ) p ( z ) p(x)=\sum_z p(x \mid z) p(z) p(x)=zp(xz)p(z)

连续分布时,该式就变成了
p ( x ) = ∫ z ⁡ p ( x ∣ z ) p ( z ) d z p(x)=\int_z^{\operatorname{}} p(x \mid z) p(z) d z p(x)=zp(xz)p(z)dz

p ( z ) p(z) p(z)可以是任意分布,在VAE中我们常常假设p(z)服从标准正态分布。

变分方法

Intractability:
p θ ( z ∣ x ) = p θ ( x ∣ z ) p θ ( z ) / p θ ( x ) p θ ( x ) = ∫ p θ ( z ) p θ ( x ˙ ∣ z ) d z \begin{aligned} p_{\boldsymbol{\theta}}(\mathbf{z} \mid \mathbf{x}) & =p_{\boldsymbol{\theta}}(\mathbf{x} \mid \mathbf{z}) p_{\boldsymbol{\theta}}(\mathbf{z}) / p_{\boldsymbol{\theta}}(\mathbf{x}) \\ p_{\boldsymbol{\theta}}(\mathbf{x}) & =\int p_{\boldsymbol{\theta}}(\mathbf{z}) p_{\boldsymbol{\theta}}(\dot{\mathbf{x}} \mid \mathbf{z}) d \mathbf{z} \end{aligned} pθ(zx)pθ(x)=pθ(xz)pθ(z)/pθ(x)=pθ(z)pθ(x˙z)dz
p ( z ∣ x ( i ) ) = p ( z , x ( i ) ) p ( x ( i ) ) = p ( x = x ( i ) ∣ z = z ( i ) ) p ( z = z ( i ) ) ∫ z ( i ) p ( x = x ( i ) ∣ z = z ( i ) ) p ( z = z ( i ) ) d z ( i ) = p ( x ( i ) ∣ z ) p ( z ) ∫ z p ( x ( i ) ∣ z ) p ( z ) d z \begin{aligned} p\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) & =\frac{p\left(\mathbf{z}, \mathbf{x}^{(i)}\right)}{p\left(\mathbf{x}^{(i)}\right)} \\ & =\frac{p\left(\mathbf{x}=\mathbf{x}^{(i)} \mid \mathbf{z}=\mathbf{z}^{(i)}\right) p\left(\mathbf{z}=\mathbf{z}^{(i)}\right)}{\int_{\mathbf{z}^{(i)}} p\left(\mathbf{x}=\mathbf{x}^{(i)} \mid \mathbf{z}=\mathbf{z}^{(i)}\right) p\left(\mathbf{z}=\mathbf{z}^{(i)}\right) d \mathbf{z}^{(i)}} \\ & =\frac{p\left(\mathbf{x}^{(i)} \mid \mathbf{z}\right) p(\mathbf{z})}{\int_{\mathbf{z}} p\left(\mathbf{x}^{(i)} \mid \mathbf{z}\right) p(\mathbf{z}) d \mathbf{z}} \end{aligned} p(zx(i))=p(x(i))p(z,x(i))=z(i)p(x=x(i)z=z(i))p(z=z(i))dz(i)p(x=x(i)z=z(i))p(z=z(i))=zp(x(i)z)p(z)dzp(x(i)z)p(z)
参考:https://zhuanlan.zhihu.com/p/519448634

如果假设参数 θ \theta θ 已知, 那么先验分布 p θ ( z ) p_\theta(\mathbf{z}) pθ(z) 和条件似然函数 p θ ( x ( i ) ∣ z ) p_\theta\left(\mathbf{x}^{(i)} \mid \mathbf{z}\right) pθ(x(i)z) 就都是已知的。理论上 来说, 只要把分母里的积分项 ∫ z p θ ( x ( i ) ∣ z ) p ( z ) d z \int_{\mathbf{z}} p_\theta\left(\mathbf{x}^{(i)} \mid \mathbf{z}\right) p(\mathbf{z}) d \mathbf{z} zpθ(x(i)z)p(z)dz 计算出来, 那整个后验分布 p ( z ∣ x ( i ) ) p\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) p(zx(i)) 就 可以求了, 后验推断问题也就解决了。但是, 现实很骨感, 在没有对 p θ ( z ) p_\theta(\mathbf{z}) pθ(z) p θ ( x ( i ) ∣ z ) p_\theta\left(\mathbf{x}^{(i)} \mid \mathbf{z}\right) pθ(x(i)z) 作任何 简化假设的前提下, 这个积分基本上是没有解析解的。你想硬着头皮解, 那么基本意味着你要穷举 隐变量 z \mathbf{z} z 的所有可能取值, 假设 z \mathbf{z} z k k k 个维度, 每个维度采样 n n n 个取值, 那么这个穷举过程的复 杂度就是 O ( n k ) O\left(n^k\right) O(nk)

当然也有人用MCMC来做积分项的估计,虽然这个方案做采样估计很精准,但是费时费力,很难适用于大数据场景。所以一般更常见的方案是采用变分方法(variational method),它可以绕过对积分项的求解,通过把统计推断问题转化成参数优化问题来实现“降维打击”。

首先变分方法会设置一个新的参数化分布 q ϕ ( z ∣ x ( i ) ) q_\phi\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) qϕ(zx(i)), 它的参数是 ϕ \phi ϕ, 我们把它称作"识别模型" (原文记作recognition model) 。变分方法的核心思想是:直接让“识别模型”去拟合后验分布 p θ ( z ∣ x ( i ) ) p_\theta\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) pθ(zx(i)), 只要近似到位, 那么采用 q ϕ ( z ∣ x ( i ) ) q_\phi\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) qϕ(zx(i)) 作为后验推断的结果就行了。如何做近似呢? 很简单, 直接最小化 q ϕ ( z ∣ x ( i ) ) q_\phi\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) qϕ(zx(i)) p θ ( z ∣ x ( i ) ) p_\theta\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) pθ(zx(i)) 两者间的KL散度即可。

就这样,变分方法把原来的统计推断问题转化成了优化问题:

Approximation p θ ( z ∣ x ) ≅ q ϕ ( z ∣ x ) \quad p_\theta(z \mid x) \cong q_\phi(z \mid x) pθ(zx)qϕ(zx)
D K L ( q ϕ ( z ∣ x ) ∥ p θ ( z ∣ x ) ) = − ∑ decoder  q ϕ ( z ∣ x ) log ⁡ ( p θ ( z ∣ x ) q ϕ ( z ∣ x ) ) = − ∑ z q ϕ ( z ∣ x ) log ⁡ ( p θ ( x , z ) p θ ( x ) q ϕ ( z ∣ x ) ) = − ∑ z q ϕ ( z ∣ x ) [ log ⁡ ( p θ ( x , z ) q ϕ ( z ∣ x ) ) − log ⁡ ( p θ ( x ) ) ‾ ]  non-negative  log ⁡ ( p θ ( x ) ) = K L ( q ϕ ( z ∣ x ) ∥ p θ ( z ∣ x ) ) + ∑ z q ϕ ( z ∣ x ) log ⁡ ( p θ ( x , z ) q ϕ ( z ∣ x ) ) = D K L ( q ϕ ( z ∣ x ) ∣ ∣ p θ ( z ∣ x ) ) + L ( θ , ϕ ; x )  Variational lower bound  \begin{aligned} & D_{K L}\left(q_\phi(z \mid x) \| p_\theta(z \mid x)\right)=-\sum_{\text {decoder }} q_\phi(z \mid x) \log \left(\frac{p_\theta(z \mid x)}{q_\phi(z \mid x)}\right)=-\sum_z q_\phi(z \mid x) \log \left(\frac{\frac{p_\theta(x, z)}{p_\theta(x)}}{q_\phi(z \mid x)}\right) \\ & =-\sum_z q_\phi(z \mid x)\left[\log \left(\frac{p_\theta(x, z)}{q_\phi(z \mid x)}\right)-\underline{\log \left(p_\theta(x)\right)}\right] \\ & \begin{array}{c} \text { non-negative } \\ \log \left(p_\theta(x)\right) \end{array}=K L\left(q_\phi(z \mid x) \| p_\theta(z \mid x)\right)+\sum_z q_\phi(z \mid x) \log \left(\frac{p_\theta(x, z)}{q_\phi(z \mid x)}\right) \\ & =D_{K L}\left(q_\phi(z \mid x)|| p_\theta(z \mid x)\right)+\frac{L(\theta, \phi ; x)}{\text { Variational lower bound }} \\ & \end{aligned} DKL(qϕ(zx)pθ(zx))=decoder qϕ(zx)log(qϕ(zx)pθ(zx))=zqϕ(zx)log qϕ(zx)pθ(x)pθ(x,z) =zqϕ(zx)[log(qϕ(zx)pθ(x,z))log(pθ(x))] non-negative log(pθ(x))=KL(qϕ(zx)pθ(zx))+zqϕ(zx)log(qϕ(zx)pθ(x,z))=DKL(qϕ(zx)∣∣pθ(zx))+ Variational lower bound L(θ,ϕ;x)

Maximize the lower bound
L ( θ , ϕ ; x ) = ∑ z q ϕ ( z ∣ x ) log ⁡ ( p θ ( x , z ) q ϕ ( z ∣ x ) ) = ∑ z q ϕ ( z ∣ x ) log ⁡ ( p θ ( x ∣ z ) p θ ( z ) q ϕ ( z ∣ x ) ) = ∑ z q ϕ ( z ∣ x ) [ log ⁡ ( p θ ( x ∣ z ) ) + log ⁡ ( p θ ( z ) q ϕ ( z ∣ x ) ) ] = E q ϕ ( z ∣ x ) [ log ⁡ ( p θ ( x ∣ z ) ) ]  Reconstruction Loss  − D K L ( q ϕ ( z ∣ x ) ∥ p θ ( z ) )  Regularization Loss  \begin{aligned} & L(\theta, \phi ; x)=\sum_z q_\phi(z \mid x) \log \left(\frac{p_\theta(x, z)}{q_\phi(z \mid x)}\right)=\sum_z q_\phi(z \mid x) \log \left(\frac{p_\theta(x \mid z) p_\theta(z)}{q_\phi(z \mid x)}\right) \\ &= \sum_z q_\phi(z \mid x)\left[\log \left(p_\theta(x \mid z)\right)+\log \left(\frac{p_\theta(z)}{q_\phi(z \mid x)}\right)\right] \\ &= \frac{E_{q_\phi(z \mid x)}\left[\log \left(p_\theta(x \mid z)\right)\right]}{\text { Reconstruction Loss }}-\frac{D_{K L}\left(q_\phi(z \mid x) \| p_\theta(z)\right)}{\text { Regularization Loss }} \end{aligned} L(θ,ϕ;x)=zqϕ(zx)log(qϕ(zx)pθ(x,z))=zqϕ(zx)log(qϕ(zx)pθ(xz)pθ(z))=zqϕ(zx)[log(pθ(xz))+log(qϕ(zx)pθ(z))]= Reconstruction Loss Eqϕ(zx)[log(pθ(xz))] Regularization Loss DKL(qϕ(zx)pθ(z))

L ( θ , ϕ ; x ) = ∑ z q ϕ ( z ∣ x ) log ⁡ ( p θ ( x , z ) q ϕ ( z ∣ x ) ) = ∑ z q ϕ ( z ∣ x ) log ⁡ ( p θ ( x ∣ z ) p θ ( z ) q ϕ ( z ∣ x ) ) = ∑ z q ϕ ( z ∣ x ) [ log ⁡ ( p θ ( x ∣ z ) ) + log ⁡ ( p θ ( z ) q ϕ ( z ∣ x ) ) ] \begin{gathered} L(\theta, \phi ; x)=\sum_z q_\phi(z \mid x) \log \left(\frac{p_\theta(x, z)}{q_\phi(z \mid x)}\right)=\sum_z q_\phi(z \mid x) \log \left(\frac{p_\theta(x \mid z) p_\theta(z)}{q_\phi(z \mid x)}\right) \\ =\sum_z q_\phi(z \mid x)\left[\log \left(p_\theta(x \mid z)\right)+\log \left(\frac{p_\theta(z)}{q_\phi(z \mid x)}\right)\right] \end{gathered} L(θ,ϕ;x)=zqϕ(zx)log(qϕ(zx)pθ(x,z))=zqϕ(zx)log(qϕ(zx)pθ(xz)pθ(z))=zqϕ(zx)[log(pθ(xz))+log(qϕ(zx)pθ(z))]

Regularization Loss( 重参数化)

而在实践中, 一般不对 q ϕ ( z ∣ x ( i ) ) q_\phi\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) qϕ(zx(i)) 直接作采样, 采用 reparameterization trick 来简化操作, 我们 设 z ( i , l ) = g ϕ ( ϵ ( i ; l ) ; x ( i ) ) \mathbf{z}^{(i, l)}=g_\phi\left(\epsilon^{(i ; l)} ; \mathbf{x}^{(i)}\right) z(i,l)=gϕ(ϵ(i;l);x(i)), 其中 g ϕ g_\phi gϕ 是一个拟合函数 (e.g. 神经网络) , 而噪声 ϵ ( i ; l ) \epsilon^{(i ; l)} ϵ(i;l) 可以通过 采样得到, 一般直接采样自简单的标准正态分布。

∫ q θ ( z ∣ x ) log ⁡ p ( z ) d z = ∫ N ( z ; μ , σ 2 ) log ⁡ N ( z ; 0 , I ) d z \int q_\theta(z \mid x) \log p(z) d z=\int N\left(z ; \mu, \sigma^2\right) \log N(z ; 0, I) dz qθ(zx)logp(z)dz=N(z;μ,σ2)logN(z;0,I)dz
f ( x ) = 1 σ 2 π e − 1 2 ( x − μ σ ) 2 f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} f(x)=σ2π 1e21(σxμ)2

= ∫ N ( z ; μ , σ 2 ) ( − 1 2 z 2 − 1 2 log ⁡ ( 2 π ) ) d z = − 1 2 ∫ N ( z ; μ , σ 2 ) z 2 d z − J 2 log ⁡ ( 2 π ) = − J 2 log ⁡ ( 2 π ) − 1 2 E z ∼ N ( z ; μ , σ 2 ) [ Z 2 ] = − J 2 log ⁡ ( 2 π ) − 1 2 ( E z ∼ N ( z ; μ , σ 2 ) [ Z ] 2 + Var ⁡ ( Z ) ) = − J 2 log ⁡ ( 2 π ) − 1 2 ∑ j = 1 J ( μ j 2 + σ j 2 )  Let  J  be the dimensionality of  z \begin{aligned} & =\int N\left(z ; \mu, \sigma^2\right)\left(-\frac{1}{2} z^2-\frac{1}{2} \log (2 \pi)\right) d z=-\frac{1}{2} \int N\left(z ; \mu, \sigma^2\right) z^2 d z-\frac{J}{2} \log (2 \pi) \\ & =-\frac{J}{2} \log (2 \pi)-\frac{1}{2} E_{z \sim N\left(z ; \mu, \sigma^2\right)}\left[Z^2\right] \\ & =-\frac{J}{2} \log (2 \pi)-\frac{1}{2}\left(E_{z \sim N\left(z ; \mu, \sigma^2\right)}[Z]^2+\operatorname{Var}(Z)\right) \\ & =-\frac{J}{2} \log (2 \pi)-\frac{1}{2} \sum_{j=1}^J\left(\mu_j^2+\sigma_j^2\right) \quad \text { Let } J \text { be the dimensionality of } z \end{aligned} =N(z;μ,σ2)(21z221log(2π))dz=21N(z;μ,σ2)z2dz2Jlog(2π)=2Jlog(2π)21EzN(z;μ,σ2)[Z2]=2Jlog(2π)21(EzN(z;μ,σ2)[Z]2+Var(Z))=2Jlog(2π)21j=1J(μj2+σj2) Let J be the dimensionality of z

L1用于最小化 K L ( q ( z ∣ x ) ∣ ∣ p ( z ) ) KL(q(z|x) || p(z)) KL(q(zx)∣∣p(z)),VAE假设 q ( z ∣ x ) q(z|x) q(zx)的分布为正态分布,而 p ( z ) p(z) p(z)为标准正态分布。计算两个正态分布之间的KL散度的公式如下:
K L ( N ( μ 1 , σ 1 2 ) , N ( μ 2 , σ 2 2 ) ) = log ⁡ σ 2 σ 1 + σ 1 2 + ( μ 1 − μ 2 ) 2 2 σ 2 2 − 1 2 K L\left(N\left(\mu_1, \sigma_1^2\right), N\left(\mu_2, \sigma_2^2\right)\right)=\log \frac{\sigma_2}{\sigma_1}+\frac{\sigma_1^2+\left(\mu_1-\mu_2\right)^2}{2 \sigma_2^2}-\frac{1}{2} KL(N(μ1,σ12),N(μ2,σ22))=logσ1σ2+2σ22σ12+(μ1μ2)221

由于此处p(z)为标准正态分布,因此其μ为0,σ为1,那么我们带入后可得
L 1 = − 1 2 ( log ⁡ σ 2 − σ 2 − μ 2 + 1 ) L_1=-\frac{1}{2}\left(\log \sigma^2-\sigma^2-\mu^2+1\right) L1=21(logσ2σ2μ2+1)

采用reparameterization trick有两大好处:

  • 由于分布 q ϕ ( z ∣ x ( i ) ) q_\phi\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) qϕ(zx(i)) 可能是一个比较复杂的函数, 直接采样操作费时费力, 而且采样方差可能很 大, 不利于收玫, 通过reparameterization可以简化操作, 提高效率, 提高数值上的稳定性;
  • 假设我们不考虑采样难度, 直接对 q ϕ ( z ∣ x ( i ) ) q_\phi\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) qϕ(zx(i)) 采样, 那么梯度反向传播的时候, 损失函数中的 1 L ∑ l = 1 L [ log ⁡ p θ ( x ( i ) ∣ z ( i , l ) ) ] \frac{1}{L} \sum_{l=1}^L\left[\log p_\theta\left(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i, l)}\right)\right] L1l=1L[logpθ(x(i)z(i,l))] 是没法对 ϕ \phi ϕ 求导的, 这样损失函数 L ( ϕ , θ , x ( i ) ) \mathcal{L}\left(\phi, \theta, \mathbf{x}^{(\mathbf{i})}\right) L(ϕ,θ,x(i)) 只能通过KL散度 的梯度对 ϕ \phi ϕ 做优化, 这和我们做联合参数优化的意图是违背的。所以使用reparameterization trick 让 z ( i , l ) = g ϕ ( ϵ ( i ; l ) ; x ( i ) ) \mathbf{z}^{(i, l)}=g_\phi\left(\epsilon^{(i ; l)} ; \mathbf{x}^{(i)}\right) z(i,l)=gϕ(ϵ(i;l);x(i)), 实际上是让参数 θ , ϕ \theta, \phi θ,ϕ 可以同时得到期望项和KL散度项的反传 梯度进行优化, 让模型学得更好。

Reconstruction Loss

L ( θ , ϕ ; x ( i ) ) = − D K L ( q ϕ ( z ∣ x ( i ) ) ∥ p θ ( z ) ) ‾ + E q ϕ ( z ∣ x ( i ) ) [ log ⁡ p θ ( x ( i ) ∣ z ) ] ‾ − D K L ( ( q ϕ ( z ) ∥ p θ ( z ) ) = ∫ q θ ( z ) ( log ⁡ p θ ( z ) − log ⁡ q θ ( z ) ) d z = 1 2 ∑ j = 1 J ( 1 + log ⁡ ( ( σ j ) 2 ) − ( μ j ) 2 − ( σ j ) 2 ) f ∗ = arg ⁡ max ⁡ f ∈ F E z ∼ q x ∗ ( log ⁡ p ( x ∣ z ) ) = arg ⁡ max ⁡ f ∈ F E z ∼ q x ∗ ( − ∥ x − f ( z ) ∥ 2 2 c ) \begin{aligned} & \mathcal{L}\left(\boldsymbol{\theta}, \boldsymbol{\phi} ; \mathbf{x}^{(i)}\right)=\underline{-D_{K L}\left(q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) \| p_{\boldsymbol{\theta}}(\mathbf{z})\right)}+\underline{\mathbb{E}_{q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right)}\left[\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)} \mid \mathbf{z}\right)\right]} \\ & -D_{K L}\left(\left(q_{\boldsymbol{\phi}}(\mathbf{z}) \| p_{\boldsymbol{\theta}}(\mathbf{z})\right)=\int q_{\boldsymbol{\theta}}(\mathbf{z})\left(\log p_{\boldsymbol{\theta}}(\mathbf{z})-\log q_{\boldsymbol{\theta}}(\mathbf{z})\right) d \mathbf{z}\right. \\ & =\frac{1}{2} \sum_{j=1}^J\left(1+\log \left(\left(\sigma_j\right)^2\right)-\left(\mu_j\right)^2-\left(\sigma_j\right)^2\right) \\ & f^*=\underset{f \in F}{\arg \max } \mathbb{E}_{z \sim q_x^*}(\log p(x \mid z)) \\ & =\underset{f \in F}{\arg \max } \mathbb{E}_{z \sim q_x^*}\left(-\frac{\|x-f(z)\|^2}{2 c}\right) \\ & \end{aligned} L(θ,ϕ;x(i))=DKL(qϕ(zx(i))pθ(z))+Eqϕ(zx(i))[logpθ(x(i)z)]DKL((qϕ(z)pθ(z))=qθ(z)(logpθ(z)logqθ(z))dz=21j=1J(1+log((σj)2)(μj)2(σj)2)f=fFargmaxEzqx(logp(xz))=fFargmaxEzqx(2cxf(z)2)

L ( θ , ϕ ; x ( i ) ) = − D K L ( q ϕ ( z ∣ x ( i ) ) ∥ p θ ( z ) ) + E q ϕ ( z ∣ x ( i ) ) [ log ⁡ p θ ( x ( i ) ∣ z ) ] \mathcal{L}\left(\boldsymbol{\theta}, \boldsymbol{\phi} ; \mathbf{x}^{(i)}\right)=-D_{K L}\left(q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) \| p_{\boldsymbol{\theta}}(\mathbf{z})\right)+\mathbb{E}_{q_{\boldsymbol{\phi}}\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right)}\left[\log p_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)} \mid \mathbf{z}\right)\right] L(θ,ϕ;x(i))=DKL(qϕ(zx(i))pθ(z))+Eqϕ(zx(i))[logpθ(x(i)z)]
VAE 理论推导及代码实现


import argparse
import torch
import torch.utils.data
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image


parser = argparse.ArgumentParser(description='VAE MNIST Example with Different Losses')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
                    help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=100, metavar='N',
                    help='number of epochs to train (default: 100)')
parser.add_argument('--no-cuda', action='store_true', default=False,
                    help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
                    help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100000, metavar='N',
                    help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()

torch.manual_seed(args.seed)

device = torch.device("cuda" if args.cuda else "cpu")

kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./datasets', train=True, download=True,
                   transform=transforms.ToTensor()),
    batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./datasets', train=False, transform=transforms.ToTensor()),
    batch_size=args.batch_size, shuffle=True, **kwargs)


class VAE(nn.Module):
    def __init__(self):
        super(VAE, self).__init__()

        self.fc1 = nn.Linear(784, 400)
        self.fc21 = nn.Linear(400, 20)
        self.fc22 = nn.Linear(400, 20)
        self.fc3 = nn.Linear(20, 400)
        self.fc4 = nn.Linear(400, 784)

    def encode(self, x):
        h1 = F.relu(self.fc1(x))
        return self.fc21(h1), self.fc22(h1)

    def reparameterize(self, mu, logvar):
        std = torch.exp(0.5*logvar)
        eps = torch.randn_like(std)
        return mu + eps*std

    def decode(self, z):
        h3 = F.relu(self.fc3(z))
        return torch.sigmoid(self.fc4(h3))

    def forward(self, x):
        mu, logvar = self.encode(x.view(-1, 784))
        z = self.reparameterize(mu, logvar)
        return self.decode(z), mu, logvar


model = VAE().to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)

### 1.
# Reconstruction + KL divergence losses summed over all elements and batch
def loss_function_original(recon_x, x, mu, logvar):
    BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')

    # 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
    KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
    return BCE + KLD

### 2. 
# using the loss function which only consider reconstruction term.
def loss_function_only_recon(recon_x, x):
    BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
    return BCE

### 3. 
# be careful of the way two losses calculated.
# the only difference of this loss function is that the second term - KLD
# is "mean".
def loss_function_o1(recon_x, x, mu, logvar):
    BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')

    KLD = -0.5 * torch.mean(1 + logvar - mu.pow(2) - logvar.exp())
    return BCE + KLD

### 4.
def loss_function_o2(recon_x, x, mu, logvar):
    BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='mean')

    KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
    return BCE + KLD

### 5.
def loss_function_kld(recon_x, x, mu, logvar):
    KLD = -0.5 * torch.mean(1 + logvar - mu.pow(2) - logvar.exp())
    return KLD

### 6.
# apply the l1 loss
def loss_function_l1(recon_x, x, mu, logvar):
    L1 = F.l1_loss(recon_x, x.view(-1, 784), reduction='sum')
    KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
    return L1 + KLD

### 7.
# apply the MSE loss
def loss_function_l2(recon_x, x, mu, logvar):
    L1 = F.mse_loss(recon_x, x.view(-1, 784), reduction='sum')
    KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
    return L1 + KLD

def train(epoch):
    model.train()
    train_loss = 0
    for batch_idx, (data, _) in enumerate(train_loader):
        data = data.to(device)
        optimizer.zero_grad()
        recon_batch, mu, logvar = model(data)
        which_loss = 7
        
        if which_loss==1:
            loss = loss_function_original(recon_batch, data, mu, logvar)
        elif which_loss==2:
            loss = loss_function_only_recon(recon_batch, data)
        elif which_loss==3:
            loss = loss_function_o1(recon_batch, data, mu, logvar)
        elif which_loss==4:
            loss = loss_function_o2(recon_batch, data, mu, logvar)
        elif which_loss==5:
            loss = loss_function_kld(recon_batch, data, mu, logvar)
        elif which_loss==6:
            loss = loss_function_l1(recon_batch, data, mu, logvar)
        elif which_loss==7:
            loss = loss_function_l2(recon_batch, data, mu, logvar)
            
        loss.backward()
        train_loss += loss.item()
        optimizer.step()

    print('====> Epoch: {} Average loss: {:.4f}'.format(epoch, train_loss / len(train_loader.dataset)))


def test(epoch):
    model.eval()
    with torch.no_grad():
        for i, (data, _) in enumerate(test_loader):
            data = data.to(device)
            recon_batch, mu, logvar = model(data)
            if (i == 0) and (epoch % 10 == 0):
                n = min(data.size(0), 8)
                comparison = torch.cat([data[:n],
                                      recon_batch.view(args.batch_size, 1, 28, 28)[:n]])
                save_image(comparison.cpu(),
                         'vae_img/7_m_reconstruction_' + str(epoch) + '.png', nrow=n)

if __name__ == "__main__":
    for epoch in range(1, args.epochs + 1):
        train(epoch)
        test(epoch)
        if epoch%10 == 0:
            with torch.no_grad():
                sample = torch.randn(64, 20).to(device)
                sample = model.decode(sample).cpu()
                save_image(sample.view(64, 1, 28, 28),
                        'vae_img/7_m_sample_' + str(epoch) + '.png')

参考

https://zhuanlan.zhihu.com/p/345360992文章来源地址https://www.toymoban.com/news/detail-414145.html

到了这里,关于VAE 理论推导及代码实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Kriging代理模型理论相关推导

    代理模型是指在分析和优化设计过程中可替代那些比较复杂和费时的数值分析的近似数学模型,也称为响应面模型、近似模型或元模型。代理模型方法可以大大提高优化设计效率、降低优化难度,并有利于实现并行优化设计。在现有代理模型方法中,源于地质统计学的Krigin

    2024年02月01日
    浏览(45)
  • 机器学习理论基础—支持向量机的推导(一)

    SVM:从几何角度,对于线性可分数据集,支持向量机就是找距离正负样本都最远的超平面,相比于感知机,其解是唯一的,且不偏不倚,泛化性能更好。 超平面 n维空间的超平面(wT X+ b= 0,其中w,x ∈ R) 超平面方程不唯— 法向量w和位移项b确定一个唯一超平面 法向量w垂直于

    2024年04月28日
    浏览(32)
  • AI-应试-机器学习公式推导与代码实现-预备

    (AI算法系列) 机器学习 背景 训练过程 应用场景 局限及挑战 未来 2.1机器学习 模型:要学习的决策函数或条件概率分布 策略:决定按什么标准选最优模型-》loss 分类:对数、交叉熵 回归:均方 算法:具体的优化求解算法:梯度下降、牛顿法、拟牛顿法 2.2 核心:从数据中最

    2024年02月03日
    浏览(52)
  • 【强化学习理论】状态价值函数与动作价值函数系列公式推导

    由于时常对状态价值函数与动作价值函数之间的定义区别、公式关系迷惑不清,此次进行梳理并作记录。 理解公式推导需要先了解基础定义中几个概念。 奖励函数 奖励函数 有两种记法。 ①记作 r ( s ) r(s) r ( s ) ,表示某状态 s s s 的奖励,指:转移到该状态时能够获得的奖励

    2024年02月10日
    浏览(47)
  • 相机标定-机器视觉基础(理论推导、Halcon和OpenCV相机标定)

             相机标定是获得目标工件精准坐标信息的基础。首先,必须进行相机内参标定,构建一个模型消除图像畸变;其次,需要对相机和机器人的映射关系进行手眼标定,构建一个模型将图像坐标系上的点映射到世界坐标系。主要分为背景知识、相机内外参模型推导、

    2023年04月21日
    浏览(45)
  • MUSIC算法相关原理知识(物理解读+数学推导+Matlab代码实现)

    部分来自于网络教程,如有侵权请联系本人删除  教程链接:MUSIC算法的直观解释:1,MUSIC算法的背景和基础知识_哔哩哔哩_bilibili  MUSIC算法的直观解释:2,我对于MUSIC算法的理解_哔哩哔哩_bilibili https://blog.csdn.net/zhangziju/article/details/100730081  一、MUSIC算法作用 MUSIC (Multiple

    2024年02月02日
    浏览(40)
  • 机器学习&&深度学习——自注意力和位置编码(数学推导+代码实现)

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习——注意力分数(详细数学推导+代码实现) 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 在深度学习中,经常使用CNN和RNN对序列进行编码。有了自注意力之后,我们

    2024年02月12日
    浏览(70)
  • 贝塞尔曲线(Bezier Curve)原理、公式推导及matlab代码实现

    目录 参考链接 定义 直观理解  公式推导 一次贝塞尔曲线(线性公式) 二次贝塞尔曲线(二次方公式)  三次贝塞尔曲线(三次方公式) n次贝塞尔曲线(一般参数公式) 代码实现 贝塞尔曲线(Bezier Curve)原理及公式推导_bezier曲线-CSDN博客 贝塞尔曲线(Bezier Curve)原理、公

    2024年01月20日
    浏览(47)
  • 【数学建模】常用微分方程模型 + 详细手写公式推导 + Matlab代码实现

    微分方程基本概念 微分方程在数学建模中的应用 微分方程常用模型(人口增长模型、传染病模型) 2022.06.19 微分方程,是指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。 微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中

    2024年02月09日
    浏览(64)
  • 【数据结构】线索二叉树(适用场景+图文推导过程+C语言代码实现)

    普通二叉树(如下图): 空间浪费 :存在大量“∧”,该空间未利用。 时间效率 :查找一次结点的前驱、后继就需要遍历一次,时间效率低。         在实际问题中,如果所用的 二叉树需经常遍历或查找结点时需要某种遍历序列中的前驱和后继,那么采用线索二叉链表

    2024年02月04日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包