1.1.了解ES(ElasticSearch)
1.1.1.ElasticSearch的作用
ElasticSearch
是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容
例如:
-
在
GitHub
搜索代码 -
在百度搜索答案
1.1.2.ELK技术栈
ElasticSearch
结合kibana
、Logstash
、Beats
,也就是elastic stack
(ELK
)。被广泛应用在日志数据分析、实时监控等领域:
而ElasticSearch
是elastic stack
的核心,负责存储、搜索、分析数据。
1.1.3.ElasticSearch和lucene
ElasticSearch
底层是基于lucene
来实现的。
Lucene
是一个Java
语言的搜索引擎类库,是Apache
公司的顶级项目,由DougCutting
于1999
年研发。官网地址:https://lucene.apache.org/ 。
Lucene
的优势:
-
易扩展
-
高性能(基于排序索引)
Lucene
的缺点:
-
只限于
java
语言开发 -
学习曲线陡峭
-
不支持水平扩展
ElasticSearch
的发展历史:
-
2004
年Shay Banon
基于Lucene
开发了Compass
; -
2010
年Shay Banon
重写了Compass
,取名为Elasticsearch
。
相对于Lucene
,ElasticSearch
具备下列优势:
-
支持分布式,可水平扩展
-
提供
Restful
接口,可被任何语言调用
1.1.4.为什么不是其他搜索技术?
目前比较知名的搜索引擎技术排名:
虽然在早期,Apache Solr
是最主要的搜索引擎技术,但随着发展ElasticSearch
已经渐渐超越了Solr
,独占鳌头:
1.1.5.总结
什么是ElasticSearch
?
- 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能
什么是elastic stack
(ELK
)?
- 是以
ElasticSearch
为核心的技术栈,包括beats
、Logstash
、kibana
、ElasticSearch
。
什么是Lucene
?
- 是
Apache
的开源搜索引擎类库,提供了搜索引擎的核心API
。
1.2.倒排索引
倒排索引的概念是基于MySQL
这样的正向索引而言的。
1.2.1.正向索引
那么什么是正向索引呢?例如给下表(tb_goods
)中的id
创建索引:
如果是根据id
查询,那么直接走索引,查询速度非常快。
但如果是基于title
做模糊查询,只能是逐行扫描数据,流程如下:
1)用户搜索数据,条件是title
符合"%手机%"
2)逐行获取数据,比如id
为1
的数据
3)判断数据中的title
是否符合用户搜索条件
4)如果符合则放入结果集,不符合则丢弃。回到步骤1
逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。
1.2.2.倒排索引
倒排索引中有两个非常重要的概念:
- 文档(
Document
):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息 - 词条(
Term
):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条
创建倒排索引是对正向索引的一种特殊处理,流程如下:
- 将每一个文档的数据利用算法分词,得到一个个词条
- 创建表,每行数据包括词条、词条所在文档
id
、位置等信息 - 因为词条唯一性,可以给词条创建索引,例如
hash
表结构索引
如图:
倒排索引的搜索流程如下(以搜索“华为手机”为例):
1)用户输入条件"华为手机"
进行搜索。
2)对用户输入内容分词,得到词条:华为
、手机
。
3)拿着词条在倒排索引中查找,可以得到包含词条的文档id
:1
、2
、3
。
4)拿着文档id
到正向索引中查找具体文档。
如图:
虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id
都建立了索引,查询速度非常快!无需全表扫描。
1.2.3.正向和倒排
那么为什么一个叫做正向索引,一个叫做倒排索引呢?
-
正向索引是最传统的,根据
id
索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程。 -
而倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的
id
,然后根据id
获取文档。是根据词条找文档的过程。
是不是恰好反过来了?
那么两者方式的优缺点是什么呢?
正向索引:
- 优点:
- 可以给多个字段创建索引
- 根据索引字段搜索、排序速度非常快
- 缺点:
- 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。
倒排索引:
- 优点:
- 根据词条搜索、模糊搜索时,速度非常快
- 缺点:
- 只能给词条创建索引,而不是字段
- 无法根据字段做排序
1.3.ES的一些概念
ElasticSearch
中有很多独有的概念,与mysql
中略有差别,但也有相似之处。
1.3.1.文档和字段
ElasticSearch
是面向 文档(Document
) 存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json
格式后存储在ElasticSearch
中:
而Json
文档中往往包含很多的字段(Field
),类似于数据库中的列。
1.3.2.索引和映射
索引(Index
),就是相同类型的文档的集合。
例如:
- 所有用户文档,就可以组织在一起,称为用户的索引;
- 所有商品的文档,可以组织在一起,称为商品的索引;
- 所有订单的文档,可以组织在一起,称为订单的索引;
因此,我们可以把索引当做是数据库中的表。
数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping
),是索引中文档的字段约束信息,类似表的结构约束。
1.3.3.MySQL与ElasticSearch
我们统一的把MySQL
与ElasticSearch
的概念做一下对比:
MySQL |
ElasticSearch |
说明 |
---|---|---|
Table |
Index |
索引(index ),就是文档的集合,类似数据库的表(table ) |
Row |
Document |
文档(Document ),就是一条条的数据,类似数据库中的行(Row ),文档都是JSON 格式 |
Column |
Field |
字段(Field ),就是JSON 文档中的字段,类似数据库中的列(Column ) |
Schema |
Mapping |
Mapping (映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema ) |
SQL |
DSL |
DSL 是ElasticSearch 提供的JSON 风格的请求语句,用来操作ElasticSearch ,实现CRUD
|
是不是说,我们用了ElasticSearch
就不再需要MySQL
了呢?
并不是如此,两者各自有自己的擅长支出:
-
Mysql
:擅长事务类型操作,可以确保数据的安全和一致性 -
ElasticSearch
:擅长海量数据的搜索、分析、计算
因此在企业中,往往是两者结合使用:文章来源:https://www.toymoban.com/news/detail-414198.html
- 对安全性要求较高的写操作,使用
MySQL
实现 - 对查询性能要求较高的搜索需求,使用
ElasticSearch
实现 - 两者再基于某种方式,实现数据的同步,保证一致性
文章来源地址https://www.toymoban.com/news/detail-414198.html
到了这里,关于SpringCloud:初识ES(ElasticSearch)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!