图算法——求最短路径(Dijkstra算法)

这篇具有很好参考价值的文章主要介绍了图算法——求最短路径(Dijkstra算法)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

       目录

一、什么是最短路径

二、迪杰斯特拉(Dijkstra)算法

 三、应用Dijkstra算法

(1) Dijkstra算法函数分析


        求图的最短路径在实际生活中有许多应用,比如说在你在一个景区的某个景点,参观完后,要怎么走最少的路程到你想参观的下个景点,这就利用到了求图最短路径的算法。求图的最短路径有很多算法,这里介绍一种迪杰斯特拉(Dijkstra)算法来求图的最短路径。

        在介绍算法前,需要掌握一点图的基本知识,比如说什么是路径,什么是路径长度等。如果对这些不了解的话,建议先了解一下。

        这是我写的一篇博客,对图的一些基本知识的简介——图的一些基本知识

一、什么是最短路径

        在网图和非网图中,最短路径的含义是不同的。由于非网图没有边上的权值,所谓最短路径,其实指的就是两个顶点之间经过的边数最少的路劲(即可以理解为把每一条边的权值看作是1)。

        对于网图来说,最短路径,是指两顶点之间经过的边上的权值之和最少的路径,并且我们称路径上的第一个顶点是源点,最后一个顶点是终点。

        求带权有向图G的最短路径问题一般可分为两类:一是单源最短路径,即求图中某一个顶点到其它顶点的最短路径,可以通过经典的 Dijkstra(迪杰斯特拉)算法求解(即是我要介绍的算法);二是求每对顶点间的最短路径,可通过Floyd(弗洛伊德)算法来求解。

二、迪杰斯特拉(Dijkstra)算法

        Dijkstra算法算法思路是设置一个集合S记录已求得的最短路径的顶点,初始时把源点V0(图中的某个顶点)放入S,集合S每并入一个新顶点 V,都要修改源点V0到集合 V-S 中顶点当前的最短路径长度值(这里可能大家会很懵,但等会我会用一个例子来解说)。

        在构造过程中需要两个辅助数组:

  • dist[ ] :记录从源点V0到其他各顶点当前的最短路径长度,它的初态为:若从 V0 到 V 有直接路径(即V0 和 V 邻接),则dist[ i ]为这两个顶点边上的权值;否则置 dist[ i ] 为 ∞。
  • path[ ]:path[ i ]表示从源点到顶点 i 之间的最短路径的前驱结点。在算法结束时,可以根据其值追溯到源点 V0 到 V 的最短路径。

        假设从顶点 V0 = 0出发,邻接矩阵Edge表示带权无向图,Edge[i][j]表示无向边 (i, j)的权值,若不存在无向边(i, j),则Edge[i][]为 ∞。

        Dijkstra算法步骤如下:

1)初始化:集合S初始化为{0},dist[ ] 的初始值dist[i] = Edge[0][i],path[ ]的初始值path[i] = -1,i = 1,2,...,n-1。

2)从顶点集合 V - S中选出V,满足dist[j] = Min{dist[i] | V  V - S},V就是当前求的一条从 V0 出发的最短路径的终点,令S = S{j}。

3)修改从V0出发到集合 V - S上任一顶点 V 可达的最短路径长度:若

      dist[j] + Edge[j][k] < dist[k],则更新 dist[k] = dist[j] + Edge[j][k],并修改path[k] = j(即修改顶点V的最短路径的前驱结点 )  。

4)重复 2)~  3)操作共 n-1 次,直到所有的顶点都包含在 S 中。

解释下步骤3),每当一个顶点加入S后,可能需要修改源点V0 到集合 V-S中的可达顶点当前的最短路径长度。下面举一个例子。如下图所示,源点为V0,初始时S = {V0},dist[1] = 6, dist[2] = 3,当V并入集合S后,dist[1] 需要更新为 5(其比6小,即说明两点之间不是直线最短,要根据两点之间路径的权值之和来看)。

图算法——求最短路径(Dijkstra算法)

下面来讲解利用Dijkstra算法来求下图中的顶点 0 出发至其余顶点的最短路径的过程。

图算法——求最短路径(Dijkstra算法)初始化:集合S初始化为{V},V可达V和V,其余顶点不可达,因此dist[]数组和path[]数组的设置如下:图算法——求最短路径(Dijkstra算法)

第一轮:选出最小dist[2],将顶点 V 并入集合S,此时已找到 V 到 V 的最短路径,S = {V,V}。当 V 加入到S后,从V到集合V-S中可到达顶点的最短路径长度可能会产生变化。因此需要更新dist[]数组。V可达V,因V -> V -> V的距离 5 比 dist[1] = 6小,更新dist[1] = 5,并修改 path[1] = 2(即V的最短路径的前驱为V);V 可达 V,V -> V - > V的距离 8 比 dist[3] = ∞ 小,更新dist[3] = 8,path[3] = 2;V可达V,V -> V -> V 的距离 10 小于 dist[5] = ∞,更新dist[5] = 10,path[5] = 2。V再无到达其余的顶点的路径,结束这一轮,此时dist[]数组和path[]数组如下:

图算法——求最短路径(Dijkstra算法) 第二轮:选出最小值dist[1],将顶点 V 并入集合S,此时已找到 V 到 V 的最短路径,S = {V,V,V}。然后更新dist[]数组和path[]数组,V可达V,V -> V -> V -> V 的距离 6 小于 dist [3] = 8 ,更新 dist[3] = 6,path[3] = 1;V 可达 V,但V已经在集合S中,故不进行操作;V 可达 V, V -> V -> V -> V的距离 9 小于 dist[4] = ∞,更新dist[4] = 9,path[4] = 1。V 已无到达其余顶点的路径,结束此轮,此时dist[]数组和path[]数组如下:

图算法——求最短路径(Dijkstra算法)

第三轮: 选出最小值 dist[3],将顶点 V 并入集合 S,此时已找到 V 到 V 的最短路径,S = { V,V,V,V}。接着更新dist[]数组和path[]数组,V 可到达 V, V -> V -> V -> V -> V 的距离为 9 等于 dist[4] = 9,我们不做更新;V 可到达 V,  V -> V -> V -> V -> V 的距离为 12 大于 dist[5] = 10,不做更新。 V 再无达到其余顶点的路径,结束此轮,此时dist[]数组和path[]数组如下:

图算法——求最短路径(Dijkstra算法)

第四轮:选出最小值 dist[4],将顶点 V 并入集合 S,此时已找到 V 到 V的最短路径,S = { V,V,V,V,V}。继续更新dist[]数组和path[]数组,V可到 V, V -> V -> V -> V -> V的距离 11 小于 dist[5] = 10,故不进行更新操作;V 可到 V, V -> V -> V -> V -> V的距离 11 小于 dist[6] = ∞,更新 dist[6] = 11,path[6] = 4。V 再无达到其余顶点的路径,结束此轮,此时dist[]数组和path[]数组如下:

图算法——求最短路径(Dijkstra算法)第五轮: 选出最小值 dist[5],将顶点 V 并入集合S,此时已找到 V 到 V的最短路径,S =  { V,V,V,V,V,V}。然后ist[]数组和path[]数组,V 可到 V, V -> V -> V -> V 的最短路径 13 大于 dist[6],故不进行更新操作。V 再无达到其余顶点的路径,结束此轮,此时dist[]数组和path[]数组如下: 

图算法——求最短路径(Dijkstra算法)

 第六轮:选出最小值 dist[6],将顶点 V 并入集合,此时全部顶点都已包含在S中,结束算法。

 整个算法每一轮的结果如下: 图算法——求最短路径(Dijkstra算法)

总结:Dijkstra算法就是最开始选离源点V最近的点,然后选好点后,再从选好点的看其邻接点的距离dist[]是否减小,减小就修改dist[]和path[];否则就不进行修改操作。Dijkstra算法基于贪心策略,用邻接矩阵表示图时,来使用Dijkstra算法,其时间复杂度为O(n*n)。当边上带有负权值时,Dijkstra算法并不适用。

使用dist[]数组和path[]数组,求最短路径,这里介绍一个例子,其它顶点依次类推。

V到V的最短路径,先利用dist[6] = 11 得出 V到V的距离,然后利用path[]得出路径。path[6] = 4,顶点V的前驱顶点是 V,再由 path[4] = 1,表示 V 的前驱是 V , path[1] = 2,表示 V 的前驱是 V,path[2] = -1,结束。最后可以得到 V 到 V 的最短路径为 V <- V <- V <- V <- V,即 V -> V -> V -> V -> V 。

 三、应用Dijkstra算法

        理解上面的Dijkstra算法求最短路径的过程,那么下面的应用Dijkstra算法的程序就很容易理解。此程序分三大块,在程序末尾我会来粗略介绍下。

使用此程序需输入以下内容创建图G:

第一步:7 12

第二步:0123456

第三步:依次输入下面的内容,输入完一行就按下换行键

0 1 6

0 2 3

1 2 2

1 3 1

1 4 4

2 3 5

2 5 7

3 4 3

3 5 6

4 5 2

4 6 2

5 6 3

        上面输入完后,即可创建下面的图G: 图算法——求最短路径(Dijkstra算法)

/*
使用此程序需输入以下内容创建图G:
第一步:7 12
第二步:0123456
第三步:依次输入下面的内容,输入完一行就按下换行键
0 1 6
0 2 3
1 2 2
1 3 1
1 4 4
2 3 5
2 5 7
3 4 3
3 5 6
4 5 2
4 6 2
5 6 3
*/
#include <stdio.h>
#include <stdbool.h>
#include <stdlib.h>

#define MaxVerterNum 100		// 顶点数目的最大值
#define INFINITY 65535			// 用65535代表 ∞

typedef char VertexType;		// 顶点的数据类型
typedef int EdgeType;			// 带权图中边上权值的数据类型

/* 邻接矩阵的存储结构 */
typedef struct
{
	VertexType Vexs[MaxVerterNum];					// 顶点表
	EdgeType Edge[MaxVerterNum][MaxVerterNum];		// 邻接矩阵
	int vexNum, arcNum;								// 图当前顶点数和弧数
}MGraph;

/*清除缓冲区的换行符*/
void Clean(void)
{
	while (getchar() != '\n')
		continue;
}

/* 建立无向网图的邻接矩阵表示 */
void CreateMGraph(MGraph* G);

/* 迪杰斯特拉(Dijkstra) 算法*/
typedef int Patharc[MaxVerterNum];			// 用于存储最短路径下标的数组,从源点Vi到顶点Vj之间的最短路径的前驱
typedef int ShortPathTable[MaxVerterNum];	// 用于存储到各点最短路径的权值和
void ShortestPath_Dijkstra(MGraph G, int v0, Patharc path, ShortPathTable D);

/* 输出最短路径 */
/* Dijkstra算法的结果输出 */
void Show_ShortestPath_Dijkstra(Patharc path, ShortPathTable dist, MGraph G, int v0);

int main(void)
{
	MGraph G;
	Patharc path;
	ShortPathTable dist;
	CreateMGraph(&G);
	for (int i = 0; i < G.vexNum; i++) // 输出各点到各点的最短路径序列,不再局限于一个顶点
	{
		ShortestPath_Dijkstra(G, i, path, dist);
		Show_ShortestPath_Dijkstra(path, dist, G, i);
	}
	return 0;
}

/* 建立无向网图的邻接矩阵表示 */
void CreateMGraph(MGraph* G)
{
	int i, j, k, w;
	printf("请输入顶点数和边数:");
	scanf("%d %d", &G->vexNum, &G->arcNum);			// 获取无向图顶点数和边数
	printf("请输入全部顶点信息:\n");
	Clean();									    // 将换行符去除
	for (i = 0; i < G->vexNum; i++)					// 读取顶点信息,建立顶点表
		scanf("%c", &G->Vexs[i]);
	for (i = 0; i < G->vexNum; i++)
		for (j = 0; j < G->vexNum; j++)
			G->Edge[i][j] = INFINITY;				// 邻接矩阵初始化
	for (k = 0; k < G->arcNum; k++)					// 读入arcNum条边,建立邻接矩阵
	{
		printf("请输入边(Vi, Vj)上的下标i,下标j和权w:\n");
		scanf("%d %d %d", &i, &j, &w);				// 获取边和权
		G->Edge[i][j] = w;							// 无向图矩阵对称
		G->Edge[j][i] = G->Edge[i][j];
	}
	return;
}

/* 迪杰斯特拉(Dijkstra) 算法*/
void ShortestPath_Dijkstra(MGraph G, int v0, Patharc path, ShortPathTable dist)
{
	int v, w, k, min;
	int final[MaxVerterNum];				/* final[w] = 1表示求得顶点 v0 至 vw的最短路                    径,即已访问过顶点vw*/
	for (v = 0; v < G.vexNum; v++)
	{
		final[v] = 0;						// 全部顶点初始化为未知最短路径状态
		dist[v] = G.Edge[v0][v];			// 将与v0点有连线的顶点加上权值
		path[v] = -1;						// 初始化路劲数组p为-1
	}
	dist[v0] = 0;							// v0至v0路径为0
	final[v0] = 1;							// v0至v0不需要路径
	/* 开始主循环,每次求得v0到某个顶点v的最短路径*/
	for (v = 1; v < G.vexNum; v++)
	{
		min = INFINITY;						// 当前所知离v0顶点的最近距离
		for (w = 0; w < G.vexNum; w++)		// 寻找离v0最近的顶点
		{
			if (!final[w] && dist[w] < min)
			{
				k = w;
				min = dist[w];				// w顶点离v0顶点更近
			}
		}
		final[k] = 1;						// 将目前找到的最近的顶点置为1
		for (w = 0; w < G.vexNum; w++)		// 修正当前最短路径及距离
		{
			/* 如果经过v顶点的路径比现在这条路径的长度短的话 */
			if (!final[w] && (min + G.Edge[k][w] < dist[w]))
			{
				/* 找到了更短的路径,修改D[w]和P[w] */
				dist[w] = min + G.Edge[k][w];	// 修改当前路径长度
				path[w] = k;
			}
		}
	}
}

/* 输出最短路径 */
/* Dijkstra算法的结果输出 */
void Show_ShortestPath_Dijkstra(Patharc path, ShortPathTable dist, MGraph G, int v)
{
	int w, k;
	printf("V%d到各点的最短路径如下:\n", v);
	for (w = 0; w < G.vexNum; w++)
	{
		if (w != v)
		{
			printf("V%d-V%d weight: %d", v, w, dist[w]);
			k = path[w];
			printf(" path: V%d", w);
			while (k != -1)  // 当 k = -1 ,结束循环并输出源点
			{
				printf(" <- V%d", k);
				k = path[k];
			}
			printf(" <- V%d\n", v);
		}
	}
	printf("\n");
}

(1) Dijkstra算法函数分析

/* 迪杰斯特拉(Dijkstra) 算法*/
void ShortestPath_Dijkstra(MGraph G, int v0, Patharc path, ShortPathTable dist)
{
	int v, w, k, min;
	int final[MaxVerterNum];				// final[w] = 1表示求得顶点 v0 至 vw的最短路径,即已访问过顶点vw
	for (v = 0; v < G.vexNum; v++)
	{
		final[v] = 0;						// 全部顶点初始化为未知最短路径状态
		dist[v] = G.Edge[v0][v];			// 将与v0点有连线的顶点加上权值
		path[v] = -1;						// 初始化路劲数组p为-1
	}
	dist[v0] = 0;							// v0至v0路径为0
	final[v0] = 1;							// v0至v0不需要路径
	/* 开始主循环,每次求得v0到某个顶点v的最短路径*/
	for (v = 1; v < G.vexNum; v++)
	{
		min = INFINITY;						// 当前所知离v0顶点的最近距离
		for (w = 0; w < G.vexNum; w++)		// 寻找离v0最近的顶点
		{
			if (!final[w] && dist[w] < min)
			{
				k = w;
				min = dist[w];				// w顶点离v0顶点更近
			}
		}
		final[k] = 1;						// 将目前找到的最近的顶点置为1
		for (w = 0; w < G.vexNum; w++)		// 修正当前最短路径及距离
		{
			/* 如果经过v顶点的路径比现在这条路径的长度短的话 */
			if (!final[w] && (min + G.Edge[k][w] < dist[w]))
			{
				/* 找到了更短的路径,修改D[w]和P[w] */
				dist[w] = min + G.Edge[k][w];	// 修改当前路径长度
				path[w] = k;
			}
		}
	}
}

         上面数组final[]保存已有路径的结点,有最短路径的结点的值为 1,无最短路径的结点的值为 0,path[]数组记录结点 V 的前驱结点,dist[]数组,记录结点 V 的前驱结点。

        首先进行初始化,final[]数组的元素的值均为 0,path[]数组的值均为 -1,当path[i]=-1时,说明此结点的前驱结点即是源点V,dist[]的元素值初始化为源点V到邻接点的距离。

        接着进入for循环,for循环内的第一个for循环用于找到 dist[] 数组的最小值。

        for循环内的第二个for循环用于进行修正。

        以上便是Dijkstra算法函数的基本内容。三大块——初始化,找dist[]最小元素、修正路径。


人生是一场无休、无歇、无情的战斗,凡是要做个够得上称为人的人,都得时时向无形的敌人作战。                                                                                                           ——罗曼·罗兰

以此句献给看这篇博客的每一个人。文章来源地址https://www.toymoban.com/news/detail-414335.html

到了这里,关于图算法——求最短路径(Dijkstra算法)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【路径规划】(1) Dijkstra 算法求解最短路,附python完整代码

    好久不见,我又回来了, 这段时间把路径规划的一系列算法整理一下 ,感兴趣的点个关注。今天介绍一下机器人路径规划算法中最基础的 Dijkstra 算法,文末有 python 完整代码,那我们开始吧。 1959 年,荷兰计算机科学家 ·EdsgerWybe·Dijkstra 发表了论文《 A note on two problems in c

    2023年04月08日
    浏览(43)
  • 【任务分配】多目标粒子群算法求解多无人机多任务路分配及路径规划(最短路程+最短时间)问题【含Matlab源码 3522期】

    1 粒子群算法 粒子群算法是智能算法领域中除蚁群算法、鱼群算法又一个智能群体算法。 PSO算法首先在可行解空间中初始化一群粒子,每个粒子都代表极值优化问题的一个潜在最优解。粒子在解空间中运动,通过跟踪个体极值Pbest和群体极值Gbest更新个体位置。 粒子每更新一次

    2024年02月04日
    浏览(61)
  • 【算法】求最短路径算法

    从某顶点出发,沿图的边到达另一顶点所经过的路径中,各边上权值之和最小的一条路径叫做最短路径。 解决最短路径的问题有以下算法:Dijkstra 算法,Bellman-Ford 算法,Floyd 算法和 SPFA 算法等。 迪杰斯特拉算法(Dijkstra 算法)是典型最短路径算法,用于计算一个节点到其它

    2024年02月02日
    浏览(33)
  • 图算法——求最短路径(Floyd算法)

    目录 一、什么是最短路径 二、弗洛伊德(Floyd)算法 三、测试程序         求图的最短路径在实际生活中有许多应用,比如说在你在一个景区的某个景点,参观完后,要怎么走最少的路程到你想参观的下个景点,这就利用到了求图最短路径的算法。求图的最短路径有很多

    2024年02月07日
    浏览(38)
  • 弗洛伊德算法(求最短路径)

    在一个加权图中,如果想找到各个顶点之间的最短路径,可以考虑使用弗洛伊德算法。 弗洛伊德算法既适用于无向加权图,也适用于有向加权图。使用弗洛伊德算法查找最短路径时,只允许环路的权值为负数,其它路径的权值必须为非负数,否则算法执行过程会出错。 弗洛

    2024年02月06日
    浏览(43)
  • 迪杰斯特拉算法(求最短路径)

    迪杰斯特拉算法用于查找图中某个顶点到其它所有顶点的最短路径,该算法既适用于无向加权图,也适用于有向加权图。 注意,使用迪杰斯特拉算法查找最短路径时,必须保证图中所有边的权值为非负数,否则查找过程很容易出错。 迪杰斯特拉算法的实现思路 图 1 是一个无

    2024年02月02日
    浏览(39)
  • 求最短路径的三种算法

    目录 一.单源最短路 1.dijkstra算法及实现 2.spfa算法及实现 (1)spafa负环判断及实现 二.多源最短路 1.floyd算法及实现 一.单源最短路 1.dijkstra算法及实现 求源点到图中其余各顶点的最短路径 dfs效率慢,解决规模小,bfs只能边权为1的图 Dijkstra算法——迪杰斯塔拉算法(非负全图)

    2024年02月14日
    浏览(37)
  • Acwing.854 Floyd求最短路 (Floyd算法)

    给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。 再给定k个询问,每个询问包含两个整数x和y,表示查询从点x到点y的最短距离,如果路径不存在,则输\\\"impossible”。 数据保证图中不存在负权回路。 第一行包含三个整数n, m, k 接下来m行,每行包含三

    2024年02月13日
    浏览(35)
  • Bellman-Ford-贝尔曼-福特-算法求最短路-负环

    Bellman-Ford(贝尔曼-福特)算法基于松弛操作的单源最短路算法。 e[u]存u点的出边的邻点和边权,d[u]存u点到源点的距离。 初始化,ds]=0,d[其它点]=+o; 执行多轮循环。每轮循环,对所有边都尝试进行一次松弛操作; 当一轮循环中没有成功的松弛操作时,算法停止 为什么最坏需要

    2024年02月13日
    浏览(36)
  • C语言算法与数据结构,旅游景区地图求最短路径

    本次作业要求完成一个编程项目。请虚构一张旅游景区地图,景区地图包括 景点(结点)和道路(边):地图上用字母标注出一些点,表示景点(比如,以点 A、B、C、D、E、F等(至少6个点)多个表示,其中的 两个字母 A 和 B 分别表示景区的入口和出口 );点与点之间的连

    2024年02月04日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包