世界坐标系、相机坐标系和图像坐标系的转换

这篇具有很好参考价值的文章主要介绍了世界坐标系、相机坐标系和图像坐标系的转换。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

坐标系转换

之前只是停留在会用的阶段,一直没去读懂计算的原理,今天通读了大佬的文章,写的言简意赅,感谢感谢~~特此记录一下,仅用作个人笔记

贴链接,十分感谢~
https://blog.csdn.net/weixin_44278406/article/details/112986651
https://blog.csdn.net/guyuealian/article/details/104184551

四个不同类型的坐标系

将三维物体转换成照片上的二维坐标,由四个坐标系进行转换。

1. 世界坐标系

世界坐标系是一个特殊坐标系,它建立了描述其他坐标系需要的参考框架。能够用世界坐标系描述其他坐标系的位置,而不能用更大的、外部的坐标系描述世界坐标系。从非技术意义上讲,世界坐标系建立的是我们所关心的最大坐标系,而不必真的是整个世界。
( X w , Y w , Z w ) (X_w,Y_w,Z_w) (XwYwZw)来表示,世界坐标系可通过旋转和平移得到相机坐标系。

2. 相机坐标系

以相机透镜的几何中心(光心)为原点,坐标系满足右手法则,用 ( X c , Y c , Z c ) (X_c,Y_c,Z_c) (XcYcZc)来表示;相机光轴为坐标系的Z轴,X轴水平,Y轴竖直。

3. 图像物理坐标系

以CCD图像的中心为原点,坐标由 ( x , y ) (x, y) (x,y) 表示,图像坐标系的单位,一般是毫米,坐标原点为相机光轴与成像平面的交点(一般情况下,这个交点是接近于图像的正中心)
世界坐标系、相机坐标系和图像坐标系的转换

CCD,英文全称:Charge coupled Device,中文全称:电荷耦合元件,可以称为CCD图像传感器。CCD是一种半导体器件,能够把光学影像转化为数字信号。 CCD上植入的微小光敏物质称作像素(Pixel)。一块CCD上包含的像素数越多,其提供的画面分辨率也就越高。

4. 图像像素坐标系

其实,当我们提及一个图像时,通常指的是图像的像素坐标系。像素坐标系的原点在左上角,并且单位为像素。
世界坐标系、相机坐标系和图像坐标系的转换

将图像坐标系的原点 O 1 O_1 O1 ,转化到以 O 0 O_0 O0 为原点的坐标系中。使用的原因:

  • 如果使用图像坐标系,单位mm,其实不太好衡量具体的图像,如果按照统一的像素标准,比较容易衡量图像的质量
  • 如果使用图像坐标系,然后就有四个象限,这样会有正负数的问题,但是转换成像素坐标系后,都为整数。在后续的操作和运算中,都简化很多。

坐标转换

针孔模型(The basic pinhole model)。这种模型在数学上是三维空间到二维平面(image plane or focal plane)的中心投影,由一个 3 × 4 3 × 4 3×4 投影矩阵 P = K [ R ∣ t ] P = K [ R | t ] P=K[Rt]来描述, K K K 为相机内参(internal camera parameters), [ R ∣ t ] [R|t] [Rt]为外参(external parameters)。

世界坐标 → 相机坐标(刚性变换)

[ X c Y c Z c 1 ] = [ R t 0 1 ∗ 3 1 ] [ X w Y w Z w 1 ] \begin{bmatrix}X_c \\ Y_c \\ Z_c \\ 1 \end{bmatrix} = \begin{bmatrix}R & t\\\\ 0_{1*3} & 1 \end{bmatrix} \begin{bmatrix}X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} XcYcZc1 = R013t1 XwYwZw1
X c , Y c , Z c X_c,Y_c,Z_c XcYcZc代表相机坐标; X w , Y w , Z w X_w,Y_w,Z_w XwYwZw代表世界坐标;R代表正交单位旋转矩阵,t代表三维平移矢量。
根据旋转角度可以分别得三个方向上的旋转矩阵,而旋转矩阵即为他们的乘积: R = R x ∗ R y ∗ R z R = R_x * R_y * R_z R=RxRyRz
顺便记录一下三个旋转矩阵的公式,经常忘记。

X X X旋转 θ \theta θ

[ X c Y c Z c ] = [ 1 0 0 0 c o s θ s i n θ 0 − s i n θ c o s θ ] [ X w Y w Z w ] = R x [ X w Y w Z w ] \begin{bmatrix}X_c\\Y_c\\Z_c\end{bmatrix} = \begin{bmatrix}1&0&0\\0&cos\theta&sin\theta\\0&-sin\theta&cos\theta\end{bmatrix} \begin{bmatrix}X_w\\Y_w\\Z_w\end{bmatrix}=R_x\begin{bmatrix}X_w\\Y_w\\Z_w\end{bmatrix} XcYcZc = 1000cosθsinθ0sinθcosθ XwYwZw =Rx XwYwZw

Y Y Y轴旋转 θ \theta θ

[ X c Y c Z c ] = [ c o s θ 0 − s i n θ 0 1 0 s i n θ 0 c o s θ ] [ X w Y w Z w ] = R y [ X w Y w Z w ] \begin{bmatrix}X_c\\Y_c\\Z_c\end{bmatrix} = \begin{bmatrix}cos\theta&0&-sin\theta\\0&1&0\\sin\theta&0&cos\theta\end{bmatrix} \begin{bmatrix}X_w\\Y_w\\Z_w\end{bmatrix}=R_y\begin{bmatrix}X_w\\Y_w\\Z_w\end{bmatrix} XcYcZc = cosθ0sinθ010sinθ0cosθ XwYwZw =Ry XwYwZw

Z Z Z轴旋转 θ \theta θ

[ X c Y c Z c ] = [ c o s θ s i n θ 0 − s i n θ c o s θ 0 0 0 1 ] [ X w Y w Z w ] = R z [ X w Y w Z w ] \begin{bmatrix}X_c\\Y_c\\Z_c\end{bmatrix} = \begin{bmatrix}cos\theta&sin\theta&0\\-sin\theta&cos\theta&0\\0&0&1\end{bmatrix} \begin{bmatrix}X_w\\Y_w\\Z_w\end{bmatrix}=R_z\begin{bmatrix}X_w\\Y_w\\Z_w\end{bmatrix} XcYcZc = cosθsinθ0sinθcosθ0001 XwYwZw =Rz XwYwZw

相机坐标 → 图像坐标系(中心投影)

相机坐标系到图像坐标系是透视关系,利用相似三角形进行计算。
世界坐标系、相机坐标系和图像坐标系的转换
写成齐次坐标形式的矩阵相乘为
Z c [ x y 1 ] = [ f 0 0 0 0 f 0 0 0 0 1 0 ] [ X c Y c Z c 1 ] = [ K ∣ 0 ] [ X c Y c Z c 1 ] Zc \begin{bmatrix}x\\y\\1\end{bmatrix} = \begin{bmatrix}f&0&0&0\\0&f&0&0\\0&0&1&0 \end{bmatrix} \begin{bmatrix}X_c\\Y_c\\Z_c\\1\end{bmatrix} = \begin{bmatrix}K|0\end{bmatrix} \begin{bmatrix}X_c\\Y_c\\Z_c\\1\end{bmatrix} Zc xy1 = f000f0001000 XcYcZc1 =[K∣0] XcYcZc1
其中f代表焦距,即相机坐标系和图像坐标系在Z轴上的差。此时投影点p的单位还是mm,并不是pixel,不方便进行后续运算。

图像坐标系 → 像素坐标系(离散化)

像素坐标系的原点在左上角,并且单位为像素。像素坐标系和图像坐标系都在成像平面上,只是各自的原点和度量单位不一样。图像坐标系的原点为相机光轴与成像平面的交点,通常情况下是成像平面的中点或者叫principal point。图像坐标系的单位是mm,属于物理单位,而像素坐标系的单位是pixel,我们平常描述一个像素点都是几行几列。所以这二者之间的转换如下:其中dx和dy表示每一列和每一行分别代表多少mm,即1pixel=dx mm

世界坐标系、相机坐标系和图像坐标系的转换
Z c [ u v 1 ] = [ 1 d x 0 u 0 0 1 d y v 0 0 0 1 ] [ f 0 0 0 0 f 0 0 0 0 1 0 ] [ R t 0 1 ∗ 3 1 ] [ X w Y w Z w 1 ] Zc \begin{bmatrix}u\\v\\1\end{bmatrix} = \begin{bmatrix}\frac{1}{d_x}&0&u_0\\0&\frac{1}{d_y}&v_0\\0&0&1 \end{bmatrix} \begin{bmatrix}f&0&0&0\\0&f&0&0\\0&0&1&0 \end{bmatrix} \begin{bmatrix}R & t\\\\ 0_{1*3} & 1 \end{bmatrix} \begin{bmatrix}X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} Zc uv1 = dx1000dy10u0v01 f000f0001000 R013t1 XwYwZw1
其中 [ 1 d x 0 u 0 0 1 d y v 0 0 0 1 ] [ f 0 0 0 0 f 0 0 0 0 1 0 ] \begin{bmatrix}\frac{1}{d_x}&0&u_0\\0&\frac{1}{d_y}&v_0\\0&0&1 \end{bmatrix} \begin{bmatrix}f&0&0&0\\0&f&0&0\\0&0&1&0 \end{bmatrix} dx1000dy10u0v01 f000f0001000 为相机内参矩阵, [ R t 0 1 ∗ 3 1 ] \begin{bmatrix}R & t\\\\ 0_{1*3} & 1 \end{bmatrix} R013t1 为外参矩阵。相机标定就是为了求解这两个矩阵的参数。

世界坐标系、相机坐标系和图像坐标系的转换文章来源地址https://www.toymoban.com/news/detail-414389.html

到了这里,关于世界坐标系、相机坐标系和图像坐标系的转换的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • MATLAB 相机标定中标定板角点像素坐标系到世界坐标系的转换

    matlab 做相机标定后,想将第一张(任意一张都行)标定板角点所对应的像素坐标转换到世界坐标系下,标定板角点的像素坐标真值与世界坐标真值都非常容易获得,但是我通过内外参矩阵将像素坐标转换到世界坐标有很大的误差,如下 像素坐标到世界坐标之间的转换可参考

    2024年02月10日
    浏览(51)
  • 机器人坐标系转换从局部坐标系转换到世界坐标系

    矩阵方式: 下面是代码: 函数方式: 根据三角函数的特性,可以进行一下简化: 下面是简化前的代码示例:

    2024年04月16日
    浏览(65)
  • 相机坐标系、像素坐标系转换

    相机内参矩阵是相机的重要参数之一,它描述了相机光学系统的内部性质,例如焦距、光学中心和图像畸变等信息。在计算机视觉和图形学中,相机内参矩阵通常用于将图像坐标系中的像素坐标转换为相机坐标系中的三维坐标,或者将相机坐标系中的三维坐标投影到图像坐标

    2024年02月13日
    浏览(48)
  • Unity坐标系的转换—世界坐标转为UI坐标

    直接调用WorldToAnchorPos,传入对应的参数返回UGUI坐标

    2024年04月13日
    浏览(44)
  • 相机基础(二)——坐标系转换

    物体之间的坐标系变换都可以表示坐标系的旋转变换加上平移变换,则世界坐标系到相机坐标系的转换关系也是如此。绕着不同的轴旋转不同的角度得到不同的旋转矩阵。如下: 那么世界坐标系到相机坐标系的变换如下: 从相机坐标系到图像坐标系,属于透视投影关系,从

    2024年02月11日
    浏览(56)
  • 相机标定 >> 坐标系转换@内参、外参

    为了更好的理解标定,首先应熟悉各个坐标系。(坐标系图均取自百度百科) 该坐标系是以图像左上角为原点建立以像素为单位的二维坐标系u-v。(相对坐标系) 图像坐标系是以 O1 (是图像的主点,也即光轴与像平面的交点,一般就是像素坐标系的中点)为原点的二维坐标

    2024年02月12日
    浏览(53)
  • 相机的位姿在地固坐标系ECEF和ENU坐标系的转换

    在地球科学和导航领域,通常使用地心地固坐标系(ECEF,Earth-Centered, Earth-Fixed)和东北天坐标系(ENU,East-North-Up)来描述地球上的位置和姿态。如下图所示: ​地心地固坐标ecef和东北天ENU坐标系 在倾斜摄影测量过程中,通常涉及这两个坐标系的转换,将相机的位姿互转,

    2024年02月12日
    浏览(45)
  • C++ api调用realsense d435相机,将坐标转换到相机坐标系

            在使用Intel RealSense相机进行编程时,首先需要创建一个 rs2::pipeline 对象,并使用该对象启动相机的数据流。在启动数据流后,相机将根据配置的参数生成相应的数据流,例如深度、彩色或红外流,并将这些数据传输到计算机中。 RS2_STREAM_DEPTH :指定启用的流类型为

    2024年02月16日
    浏览(48)
  • 齐次坐标变换的理解以及在无人机相机定位坐标系转换中的应用

    4*4矩阵的右边三个数表示平移,如果原来的向量u的w=0,那么就是u+(ai+bj+ck) 对应xyz三个轴的循环变换,注意负号的位置 用描述空间一点的变换方法来描述物体在空间的位置和方向。 先变换的矩阵乘在右边。 A p = B p + A p B o {}^{A}p={}^{B}p+{}^{A}p_{B_{o}} A p = B p + A p B o ​ ​ 从

    2024年04月15日
    浏览(60)
  • 【踩坑记录】colmap中的相机位姿的坐标系定义及其可视化结果的隐含转换

      这个问题来自于我想要使用colmap的稀疏重建结果,然后发现由于相机坐标系的定义没弄清楚,导致我获取的结果存在问题。    1 问题引出   下面先从我们还不知道坐标系定义的视角开始理解,引出问题所在。使用的是一份无人机影像数据,共有59张影像:   下图

    2024年02月06日
    浏览(176)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包