YOLOv5源码逐行超详细注释与解读(7)——网络结构(2)common.py

这篇具有很好参考价值的文章主要介绍了YOLOv5源码逐行超详细注释与解读(7)——网络结构(2)common.py。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

YOLOv5源码逐行超详细注释与解读(7)——网络结构(2)common.py

YOLOv5源码逐行超详细注释与解读(7)——网络结构(2)common.py

前言 

上一篇我们一起学习了YOLOv5的网络模型之一yolo.py,它这是YOLO的特定模块,而今天要学习另一个和网络搭建有关的文件——common.py,这个文件存放着YOLOv5网络搭建常见的通用模块。如果我们需要修改某一模块,那么就需要修改这个文件中对应模块的定义。

学这篇的同时,搭配【YOLO系列】YOLOv5超详细解读(网络详解)这篇算法详解效果更好噢~

common.py文件位置在./models/common.py

YOLOv5源码逐行超详细注释与解读(7)——网络结构(2)common.py文章来源地址https://www.toymoban.com/news/detail-414936.html

到了这里,关于YOLOv5源码逐行超详细注释与解读(7)——网络结构(2)common.py的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLOv5源码逐行超详细注释与解读(5)——配置文件yolov5s.yaml

    在YOLOv5中网络结构采用 yaml 作为配置文件,之前我们也介绍过,YOLOv5配置了4种不同大小的网络模型,分别是 YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x ,这几个模型的结构基本一样, 不同的是depth_multiple模型深度和width_multiple模型宽度这两个参数 。 就和我们买衣服的尺码大小排序一样,

    2023年04月16日
    浏览(47)
  • YOLOv5源码逐行超详细注释与解读(4)——验证部分val(test).py

    本篇文章主要是对YOLOv5项目的验证部分。这个文件之前是叫test.py,后来改为 val.py 。 在之前我们已经学习了推理部分 detect.py 和训练部分 train.py 这两个,而我们今天要介绍的验证部分 val.py 这个文件主要是 train.py 每一轮训练结束后, 用 val.py 去验证当前模型的mAP、混淆矩阵等

    2023年04月15日
    浏览(80)
  • YOLOv5网络结构完全解读【源码+手绘网络结构+模块结构】

    🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 YOLOv5网络结构详解 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 🚀 虽然寒假前就用YOLOv5跑完好几个数据集了,但是一直没有深究其网络结构及特点。开学后的一个多

    2024年02月03日
    浏览(36)
  • YOLOv5源码中的参数超详细解析(2)— 配置文件yolov5s.yaml(包括源码+网络结构图)

    前言: Hello大家好,我是小哥谈。 配置文件yolov5s.yaml在YOLOv5模型训练过程中发挥着至关重要的作用,属于初学者必知必会的文件!在YOLOv5-6.0版本源码中,配置了5种不同大小的网络模型,分别是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x,其中YOLOv5n是网络深度和宽度最小但检测速度

    2024年02月08日
    浏览(47)
  • 【YOLO系列】YOLOv5超详细解读(源码详解+入门实践+改进)

    吼吼!终于来到了YOLOv5啦! 首先,一个热知识:YOLOv5没有发表正式论文哦~ 为什么呢?可能YOLOv5项目的作者Glenn Jocher还在吃帽子吧,hh 前言 一、YOLOv5的网络结构  二、输入端 (1)Mosaic数据增强 (2)自适应锚框计算 (3)自适应图片缩放 三、Backbone (1)Focus结构 (2)CSP结构

    2024年02月07日
    浏览(43)
  • YOLOV5详细解读

    本文主要是对基于深度学习的目标检测算法进行细节解读,以YOLOV5为例; 基于深度学习的目标检测主要包括训练和测试两个部分。 训练阶段 训练的目的是利用训练数据集进行检测网络的参数学习,其中训练数据集包含大量的视觉图像和标注信息(物体位 置及类别)。训练阶

    2024年02月04日
    浏览(37)
  • 【YOLO系列】YOLOv5超详细解读(网络详解)

    吼吼!终于来到了YOLOv5啦! 首先,一个热知识:YOLOv5没有发表正式论文哦~ 为什么呢?可能YOLOv5项目的作者Glenn Jocher还在吃帽子吧,hh 前言 一、YOLOv5的网络结构  二、输入端 (1)Mosaic数据增强 (2)自适应锚框计算 (3)自适应图片缩放 三、Backbone (1)Focus结构 (2)CSP结构

    2023年04月09日
    浏览(68)
  • pytorch yolov5网络结构

    2024年02月12日
    浏览(36)
  • YOLOv5网络结构,训练策略详解

    前面已经讲过了Yolov5模型目标检测和分类模型训练流程,这一篇讲解一下yolov5模型结构,数据增强,以及训练策略。 官方地址 :https://github.com/ultralytics/yolov5 yolov5模型训练流程 :https://blog.csdn.net/qq_45066628/article/details/129470290?spm=1001.2014.3001.5501 Yolov5 (v6.2) 使用自己的数据训练分类

    2023年04月18日
    浏览(51)
  • YOLOv5网络模型的结构原理讲解(全)

    YOLOv5有几种不同的架构,各网络模型算法性能分别如下: YOLOv5是一种目标检测算法,其模型结构主要包括以下组成部分: 输入端:YOLOv5的Head网络由3个不同的输出层组成,分别负责检测大中小尺度的目标。 Backbone网络:YOLOv5使用CSPDarknet53作为其主干网络,其具有较强的特征提

    2024年02月05日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包