YOLOv5的head详解

这篇具有很好参考价值的文章主要介绍了YOLOv5的head详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

YOLOv5的head详解

在前两篇文章中我们对YOLO的backbone和neck进行了详尽的解读,如果有小伙伴没看这里贴一下传送门:
YOLOv5的Backbone设计
YOLOv5的Neck端设计
在这篇文章中,我们将针对YOLOv5的head进行解读,head虽然在网络中占比最少,但这却是YOLO最核心的内容,话不多说,进入正题。

1 YOLOv5s网络结构总览

要了解head,就不能将其与前两部分割裂开。head中的主体部分就是三个Detect检测器,即利用基于网格的anchor在不同尺度的特征图上进行目标检测的过程。由下面的网络结构图可以很清楚的看出:当输入为640*640时,三个尺度上的特征图分别为:80x80、40x40、20x20。现在问题的关键变为,Detect的过程细节是怎样的?如何在多个检测框中选择效果最好的?
YOLOv5的head详解

2 YOLO核心:Detect

首先看一下yolo中Detect的源码组成:

class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid

Detect很重要,但是内容不多,那我们就将其解剖开来,一部分一部分地看。

2.1 initial部分

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)
        self.anchor=anchors

initial部分定义了Detect过程中的重要参数
1. nc:类别数目
2. no:每个anchor的输出,包含类别数nc+置信度1+xywh4,故nc+5
3. nl:检测器的个数。以上图为例,我们有3个不同尺度上的检测器:[[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]],故检测器个数为3。
4. na:每个检测器中anchor的数量,个数为3。由于anchor是w h连续排列的,所以需要被2整除。
5. grid:检测器Detect的初始网格
6. anchor_grid:anchor的初始网格
7. m:每个检测器的最终输出,即检测器中anchor的输出no×anchor的个数nl。打印出来很好理解(60是因为我的数据集nc为15,coco是80):

ModuleList(
  (0): Conv2d(128, 60, kernel_size=(1, 1), stride=(1, 1))
  (1): Conv2d(256, 60, kernel_size=(1, 1), stride=(1, 1))
  (2): Conv2d(512, 60, kernel_size=(1, 1), stride=(1, 1))
)

2.2 forward

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

在forward操作中,网络接收3个不同尺度的特征图,如下图所示:
YOLOv5的head详解

for i in range(self.nl):
    x[i] = self.m[i](x[i])  # conv
    bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
    x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

网络的for loop次数为3,也就是依次在这3个特征图上进行网格化预测,利用卷积操作得到通道数为no×nl的特征输出。拿128x80x80举例,在nc=15的情况下经过卷积得到60x80x80的特征图,这个特征图就是后续用于格点检测的特征图。

            if not self.training:  # inference
                if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid

随后就是基于经过检测器卷积后的特征图划分网格,网格的尺寸是与输入尺寸相同的,如20x20的特征图会变成20x20的网格,那么一个网格对应到原图中就是32x32像素;40x40的一个网格就会对应到原图的16x16像素,以此类推。

y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

这里其实就是预测偏移的主体部分了。

y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy

这一句是对x和y进行预测。x、y在输入网络前都是已经归一好的(0,1),乘以2再减去0.5就是(-0.5,1.5),也就是让x、y的预测能够跨网格进行。后边self.grid[i]) * self.stride[i]就是将相对位置转为网格中的绝对位置了。

y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh

这里对宽和高进行预测,没啥好说的。

z.append(y.view(bs, -1, self.no))

最后将结果填入z文章来源地址https://www.toymoban.com/news/detail-414937.html

到了这里,关于YOLOv5的head详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLOv5算法详解

    (1) Mosaic数据增强         Yolov5的输入端采用了和Yolov4一样的Mosaic数据增强的方式。Mosaic是参考2019年底提出的CutMix数据增强的方式,但CutMix只使用了两张图片进行拼接,而Mosaic数据增强则采用了4张图片,随机缩放、裁剪、排布再进行拼接。          优点:丰富数据

    2024年02月04日
    浏览(32)
  • YOLOV5详解

    首先YOLOV3/V4/V5都是根据训练的数据集来生成anchor, 就是在训练之前用一个独立的程序去计算Anchor, 但是还不够好 因为自动生成的anchor是拿来整个数据集去做的,但是我们知道目标检测训练的时候是分batch训练的, YOLOV5这边把这个功能嵌入到训练的流程中, 也就是说YOLOV5每一个b

    2024年02月11日
    浏览(34)
  • yolov5 损失计算详解

    本文对yolov5 损失计算详解,包括正负样本匹配以及损失计算 作者将正负样本匹配 self.get_target 已经合并到 dataloader 中,而没有直接在计算loss的forward中实现,原因是在loss中实现正负样本,会大大延长训练时间(每次训练更新loss都会匹配正负样本)。实现代码在 yolov5 -utils -datalo

    2024年02月02日
    浏览(39)
  • 【目标检测】yolov5模型详解

    yolov5于2020年由glenn-jocher首次提出,直至今日yolov5仍然在不断进行升级迭代。 Yolov5有YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四个版本。文件中,这几个模型的结构基本一样,不同的是depth_multiple模型深度和width_multiple模型宽度这两个参数。 yolov5主要分为以下几部分: Input:输入 Backbone:

    2024年02月07日
    浏览(47)
  • yolov5的anchor详解

    以yolov5s v3为例: 以下是yolov5 v3.0中的anchor 为啥anchor一共是3行呢? 答:这里指的是在三个不同分辨率的特征图上的anchor,能够分别对大、中、小目标进行计算。 第一行在最大的特征图上 ----小数值检测大的目标 第二行在第二大的特征图上 第三行在最小的特征图上----大数值检

    2024年02月07日
    浏览(30)
  • YOLOv5的Backbone详解

    YOLOv5的Backbone设计 在上一篇文章《YOLOV5的anchor设定》中我们讨论了anchor的产生原理和检测过程,对YOLOv5的网络结构有了大致的了解。接下来,我们将聚焦于YOLOv5的Backbone,深入到底层源码中体会v5的Backbone设计。 yolov5s的backbone部分如上,其网络结构使用yaml文件配置,通过./mo

    2024年02月06日
    浏览(33)
  • yolov5损失函数详解【附代码】

    本文章将结合代码对yolov5损失函数部分进行详细说明,包含其中的样本匹配问题。如果还需要学习关于yolov5其他部分内容,可以参考我其他文章。 yolov5语义分割:                 yolov5图像分割中的NMS处理                 yolov5图像分割Segmentation函数 yolov5 trt

    2024年02月02日
    浏览(49)
  • YOLOv5网络结构,训练策略详解

    前面已经讲过了Yolov5模型目标检测和分类模型训练流程,这一篇讲解一下yolov5模型结构,数据增强,以及训练策略。 官方地址 :https://github.com/ultralytics/yolov5 yolov5模型训练流程 :https://blog.csdn.net/qq_45066628/article/details/129470290?spm=1001.2014.3001.5501 Yolov5 (v6.2) 使用自己的数据训练分类

    2023年04月18日
    浏览(52)
  • YOLOv5图像分割--SegmentationModel类代码详解

    目录 ​编辑 SegmentationModel类 DetectionModel类 推理阶段 DetectionModel--forward() BaseModel--forward()  Segment类 Detect--forward    定义model将会调用 models/yolo.py 中的类 SegmentationModel 。该类是继承父类-- DetectionModel 类。 因此直接去看下DetectionModel这个类代码,同时也能发现这个类又是继承 B

    2023年04月18日
    浏览(37)
  • yolov5的detect.py代码详解

    目标检测系列之yolov5的detect.py代码详解 哈喽呀!今天又是小白挑战读代码啊!所写的是目标检测系列之yolov5的detect.py代码详解。yolov5代码对应的是官网v6.1版本的,链接地址如下:https://github.com/ultralytics/yolov5 废话不多说,直接上代码啦! 代码如下(示例): 代码如下(示例

    2024年02月04日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包