一、排列
排列是有顺序的排队,从 m 中选择 n 个进行排队,第 1 个有 m-0 种选择,第 2 个有 m-1 种选择,自然的,第 n 个有 m-(n-1) 种选择。因为有顺序,可以看出前面的选择,会后面影响后面的选择,所以将选择每个的可能数相乘。
A
m
n
=
(
m
−
0
)
∗
(
m
−
1
)
∗
.
.
.
∗
(
m
−
(
n
−
1
)
)
A_{m}^{n} = (m-0)*(m-1)*...*(m-(n-1))
Amn=(m−0)∗(m−1)∗...∗(m−(n−1))文章来源:https://www.toymoban.com/news/detail-415057.html
二、组合
组合是无顺序的排队,从 m 中选择 n 个进行排队,当采用排列的方法做完时,你可以得到所有可能的排列。而组合,只是去除了其中的有序性,怎么去除?当我们选择 n 个排好队时,这 n 个内部有自己的顺序,顺序排列有多少?有
A
n
n
=
(
n
−
0
)
∗
(
n
−
1
)
.
.
.
∗
(
n
−
(
n
−
1
)
)
A_{n}^{n} = (n-0) * (n-1)...*(n-(n-1))
Ann=(n−0)∗(n−1)...∗(n−(n−1))种情况,而在组合看来,就是 1 种情况,因为它不需要内部有顺序。这样我们就可以通过计算 m 选 n 个有多少可能的排列,再去除 n 排列内部的有序性,来计算有多少可能的组合。
C
m
n
=
A
m
n
/
A
n
n
C_{m}^{n} = A_{m}^{n} / A_{n}^{n}
Cmn=Amn/Ann文章来源地址https://www.toymoban.com/news/detail-415057.html
到了这里,关于数学-排列组合的理解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!