写在前面:
在学习自动驾驶领域上的强化学习过程中,我决定使用highwy-env库建设的模拟器来进行环境构建,但是翻阅了众多教程(包含国内国外)之后,发现教程内容过旧,因为随着2023年的到来,highway-env库也进行了更新,前两年的教程无一例外都使用了老旧版本的函数和返回值。
highway-env是什么东西?
安装方式:(默认最新版)pip install highway-env
首先先列出我发现的新库中的改动:
以前返回值有四个:
observation, reward, done, info = env.step(action)
现在返回值有五个:
observation, reward, terminated, truncated, info = env.step(action)
我推测以前的环境数据形式是ndarray数组:
data = env.reset()
data = (arragry([[ndarray],[],[],...,[]]),type==dtype32)
现在的环境数据形式是元组:
data = env.reset()
data = ((arragry([[ndarray],[],[],...,[]]),type==dtype32,{reward:{},terminated:{},...,})
基于以上改动,那么在代码中的数据处理部分也会相应地发生改变。特别是在使用多个库的时候,需要注意版本关联问题。
参考的一些代码
我的虚拟环境配置:(GPU)
虚拟环境是什么东西?来人,喂它吃九转大肠。
其中必须用到的主要有以下几个:
基于 python 3.8.0
pytorch
gym
highway
tqdm
matplotlib
pygame
numpy
highway-env
使用DoubleDQN算法进行训练,此后还有在此基础上的其他改动。
默认创建python文件double_dqn.py,以下为文件中代码,拼在一起就是完整的。
注释是英文是因为我做的是英文的项目,简单翻译即可。
所使用的库
import os
import copy
import random
import time
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import gym
import highway_env
检测设备并初始化默认十字路口环境
# set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Author: Da Xuanzi 2023-2-17
# Define the environment
env = gym.make("intersection-v0")
# details
env.config["duration"] = 13
env.config["vehicles_count"] = 20
env.config["vehicles_density"] = 1.3
env.config["reward_speed_range"] = [7.0, 10.0]
env.config["initial_vehicle_count"] = 10
env.config["simulation_frequency"] = 15
env.config["arrived_reward"] = 2
env.reset()
十字路口环境的结构:
env.config
{
"observation": {
"type": "Kinematics",
"vehicles_count": 15,
"features": ["presence", "x", "y", "vx", "vy", "cos_h", "sin_h"],
"features_range": {
"x": [-100, 100],
"y": [-100, 100],
"vx": [-20, 20],
"vy": [-20, 20],
},
"absolute": True,
"flatten": False,
"observe_intentions": False
},
"action": {
"type": "DiscreteMetaAction",
"longitudinal": False,
"lateral": True
},
"duration": 13, # [s]
"destination": "o1",
"initial_vehicle_count": 10,
"spawn_probability": 0.6,
"screen_width": 600,
"screen_height": 600,
"centering_position": [0.5, 0.6],
"scaling": 5.5 * 1.3,
"collision_reward": IntersectionEnv.COLLISION_REWARD,
"normalize_reward": False
}
构建网络
可以自定义隐藏层节点个数
class Net(nn.Module):
def __init__(self, state_dim, action_dim):
# super class
super(Net, self).__init__()
# hidden nodes define
hidden_nodes1 = 1024
hidden_nodes2 = 512
self.fc1 = nn.Linear(state_dim, hidden_nodes1)
self.fc2 = nn.Linear(hidden_nodes1, hidden_nodes2)
self.fc3 = nn.Linear(hidden_nodes2, action_dim)
def forward(self, state):
# define forward pass of the actor
x = state # state
# Relu function double
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
out = self.fc3(x)
return out
构建学习器
class Replay: # learning
def __init__(self,
buffer_size, init_length, state_dim, action_dim, env):
self.buffer_size = buffer_size
self.init_length = init_length
self.state_dim = state_dim
self.action_dim = action_dim
self.env = env
self._storage = []
self._init_buffer(init_length)
def _init_buffer(self, n):
# choose n samples state taken from random actions
state = self.env.reset()
for i in range(n):
action = self.env.action_space.sample()
observation, reward, done, truncated, info = self.env.step(action)
# gym.env.step(action): tuple (obversation, reward, terminated, truncated, info) can edit
# observation: numpy array [location]
# reward: reward for *action
# terminated: bool whether end
# truncated: bool whether overflow (from done)
# info: help/log/information
if type(state) == type((1,)):
state = state[0]
# if state is tuple (ndarray[[],[],...,[]],{"speed":Float,"cashed":Bool,"action":Int,"reward":dict,"agent-reward":Float[],"agent-done":Bool}),we take its first item
# because after run env.reset(), the state stores the environmental data and it can not be edited
# we only need the state data -- the first ndarray
exp = {
"state": state,
"action": action,
"reward": reward,
"state_next": observation,
"done": done,
}
self._storage.append(exp)
state = observation
if done:
state = self.env.reset()
done = False
def buffer_add(self, exp):
# exp buffer: {exp}=={
# "state": state,
# "action": action,
# "reward": reward,
# "state_next": observation,
# "done": terminated,}
self._storage.append(exp)
if len(self._storage) > self.buffer_size:
self._storage.pop(0) # remove the last one in dict
def buffer_sample(self, n):
# random n samples from exp buffer
return random.sample(self._storage, n)
构建学习对象
PATH = 你的文件夹绝对路径/相对路径
class DOUBLEDQN(nn.Module):
def __init__(
self,
env, # gym environment
state_dim, # state size
action_dim, # action size
lr = 0.001, # learning rate
gamma = 0.99, # discount factor
batch_size = 5, # batch size for each training
timestamp = "",):
# super class
super(DOUBLEDQN, self).__init__()
self.env = env
self.env.reset()
self.timestamp = timestamp
# for evaluation purpose
self.test_env = copy.deepcopy(env)
self.state_dim = state_dim
self.action_dim = action_dim
self.gamma = gamma
self.batch_size = batch_size
self.learn_step_counter = 0
self.is_rend = False
self.target_net = Net(self.state_dim, self.action_dim).to(device)#TODO
self.estimate_net = Net(self.state_dim, self.action_dim).to(device)#TODO
self.ReplayBuffer = Replay(1000, 100, self.state_dim, self.action_dim, env)#TODO
self.optimizer = torch.optim.Adam(self.estimate_net.parameters(), lr=lr)
def choose_our_action(self, state, epsilon = 0.9):
# greedy strategy for choosing action
# state: ndarray environment state
# epsilon: float in [0,1]
# return: action we chosen
# turn to 1D float tensor -> [[a1,a2,a3,...,an]]
# we have to increase the speed of transformation ndarray to tensor if not it will spend a long time to train the model
# ndarray[[ndarray],...[ndarray]] => list[[ndarray],...[ndarray]] => ndarray[...] => tensor[...]
if type(state) == type((1,)):
state = state[0]
temp = [exp for exp in state]
target = []
target = np.array(target)
# n dimension to 1 dimension ndarray
for i in temp:
target = np.append(target,i)
state = torch.FloatTensor(target).to(device)
# randn() return a set of samples which are Gaussian distribution
# no argments -> return a float number
if np.random.randn() <= epsilon:
# when random number smaller than epsilon: do these things
# put a state array into estimate net to obtain their value array
# choose max values in value array -> obtain action
action_value = self.estimate_net(state)
action = torch.argmax(action_value).item()
else:
# when random number bigger than epsilon: randomly choose a action
action = np.random.randint(0, self.action_dim)
return action
def train(self, num_episode):
# num_eposide: total turn number for train
loss_list = [] # loss set
avg_reward_list = [] # reward set
episode_reward = 0
rend = 0
# tqdm : a model for showing process bar
for episode in tqdm(range(1,int(num_episode)+1)):
done = False
state = self.env.reset()
each_loss = 0
step = 0
if type(state) == type((1,)):
state = state[0]
while not done:
if self.is_rend:
self.env.render()
step +=1
action = self.choose_our_action(state)
observation, reward, done, truncated, info = self.env.step(action)
exp = {
"state": state,
"action": action,
"reward": reward,
"state_next": observation,
"done": done,
}
self.ReplayBuffer.buffer_add(exp)
state = observation
# sample random batch in replay memory
exp_batch = self.ReplayBuffer.buffer_sample(self.batch_size)
# extract batch data
action_batch = torch.LongTensor(
[exp["action"] for exp in exp_batch]
).to(device)
reward_batch = torch.FloatTensor(
[exp["reward"] for exp in exp_batch]
).to(device)
done_batch = torch.FloatTensor(
[1 - exp["done"] for exp in exp_batch]
).to(device)
# Slow method -> Fast method when having more data
state_next_temp = [exp["state_next"] for exp in exp_batch]
state_temp = [exp["state"] for exp in exp_batch]
state_temp_list = np.array(state_temp)
state_next_temp_list = np.array(state_next_temp)
state_next_batch = torch.FloatTensor(state_next_temp_list).to(device)
state_batch = torch.FloatTensor(state_temp_list).to(device)
# reshape
state_batch = state_batch.reshape(self.batch_size, -1)
action_batch = action_batch.reshape(self.batch_size, -1)
reward_batch = reward_batch.reshape(self.batch_size, -1)
state_next_batch = state_next_batch.reshape(self.batch_size, -1)
done_batch = done_batch.reshape(self.batch_size, -1)
# obtain estimate Q value gather(dim, index) dim==1:column index
estimate_Q_value = self.estimate_net(state_batch).gather(1, action_batch)
# obtain target Q value detach:remove the matched element
max_action_index = self.estimate_net(state_next_batch).detach().argmax(1)
target_Q_value = reward_batch + done_batch * self.gamma * self.target_net(
state_next_batch
).gather(1, max_action_index.unsqueeze(1))# squeeze(1) n*1->1*1, unsqueeze(1) 1*1->n*1
# mse_loss: mean loss
loss = F.mse_loss(estimate_Q_value, target_Q_value)
each_loss += loss.item()
# update network
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# update target network
# load parameters into model
if self.learn_step_counter % 10 == 0:
self.target_net.load_state_dict(self.estimate_net.state_dict())
self.learn_step_counter +=1
reward, count = self.eval()
episode_reward += reward
# you can update these variables
if episode_reward % 100 == 0:
rend += 1
if rend % 5 == 0:
self.is_rend = True
else:
self.is_rend = False
# save
period = 1
if episode % period == 0:
each_loss /= step
episode_reward /= period
avg_reward_list.append(episode_reward)
loss_list.append(each_loss)
print("\nepisode:[{}/{}], \t each_loss: {:.4f}, \t eposide_reward: {:.3f}, \t step: {}".format(
episode, num_episode, each_loss, episode_reward, count
))
# episode_reward = 0
# create a new directory for saving
path = PATH + "/" + self.timestamp
try:
os.makedirs(path)
except OSError:
pass
# saving as timestamp file
np.save(path + "/DOUBLE_DQN_LOSS.npy", loss_list)
np.save(path + "/DOUBLE_DQN_EACH_REWARD.npy", avg_reward_list)
torch.save(self.estimate_net.state_dict(), path + "/DOUBLE_DQN_params.pkl")
self.env.close()
return loss_list, avg_reward_list
def eval(self):
# evaluate the policy
count = 0
total_reward = 0
done = False
state = self.test_env.reset()
if type(state) == type((1,)):
state = state[0]
while not done:
action = self.choose_our_action(state, epsilon = 1)
observation, reward, done, truncated, info = self.test_env.step(action)
total_reward += reward
count += 1
state = observation
return total_reward, count
构建运行函数
超参数可以自己设置 lr gamma
if __name__ == "__main__":
# timestamp
named_tuple = time.localtime()
time_string = time.strftime("%Y-%m-%d-%H-%M", named_tuple)
print(time_string)
# create a doubledqn object
double_dqn_object = DOUBLEDQN(
env,
state_dim=105,
action_dim=3,
lr=0.001,
gamma=0.99,
batch_size=64,
timestamp=time_string,
)
# your chosen train times
iteration = 20
# start training
avg_loss, avg_reward_list = double_dqn_object.train(iteration)
path = PATH + "/" + time_string
np.save(path + "/DOUBLE_DQN_LOSS.npy", avg_loss)
np.save(path + "/DOUBLE_DQN_EACH_REWARD.npy", avg_reward_list)
torch.save(double_dqn_object.estimate_net.state_dict(), path + "/DOUBLE_DQN_params.pkl")
torch.save(double_dqn_object.state_dict(), path + "/DOUBLE_DQN_MODEL.pt")
使用数据进行绘制图片
新建文件draw_figures.py
?处自己替换成自己的路径
import matplotlib.pyplot as plt
import numpy as np
Loss = r"?\?\DOUBLE_DQN_LOSS.npy"
Reward = r"?\?\DOUBLE_DQN_EACH_REWARD.npy"
avg_loss = np.load(Loss)
avg_reward_list = np.load(Reward)
# print("loss", avg_loss)
# print("reward", avg_reward_list)
plt.figure(figsize=(10, 6))
plt.plot(avg_loss)
plt.grid()
plt.title("Double DQN Loss")
plt.xlabel("epochs")
plt.ylabel("loss")
plt.savefig(r"?\figures\double_dqn_loss.png", dpi=150)
plt.show()
plt.figure(figsize=(10, 6))
plt.plot(avg_reward_list)
plt.grid()
plt.title("Double DQN Training Reward")
plt.xlabel("epochs")
plt.ylabel("reward")
plt.savefig(r"?\figures\double_dqn_train_reward.png", dpi=150)
plt.show()
提纳里手动分割线
Dueling_DQN
以上基本稍作改动即可
class Net(nn.Module):
def __init__(self, state_dim, action_dim):
"""
Initialize the network
: param state_dim: int, size of state space
: param action_dim: int, size of action space
"""
super(Net, self).__init__()
hidden_nodes1 = 1024
hidden_nodes2 = 512
self.fc1 = nn.Linear(state_dim, hidden_nodes1)
self.fc2 = nn.Linear(hidden_nodes1, hidden_nodes2)
self.fc3 = nn.Linear(hidden_nodes2, action_dim + 1)
def forward(self, state):
"""
Define the forward pass of the actor
: param state: ndarray, the state of the environment
"""
x = state
# print(x.shape)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
out = self.fc3(x)
return out
class Replay: # learning
def __init__(self,
buffer_size, init_length, state_dim, action_dim, env):
self.buffer_size = buffer_size
self.init_length = init_length
self.state_dim = state_dim
self.action_dim = action_dim
self.env = env
self._storage = []
self._init_buffer(init_length)
def _init_buffer(self, n):
# choose n samples state taken from random actions
state = self.env.reset()
for i in range(n):
action = self.env.action_space.sample()
observation, reward, done, truncated, info = self.env.step(action)
# gym.env.step(action): tuple (obversation, reward, terminated, truncated, info) can edit
# observation: numpy array [location]
# reward: reward for *action
# terminated: bool whether end
# truncated: bool whether overflow (from done)
# info: help/log/information
if type(state) == type((1,)):
state = state[0]
# if state is tuple (ndarray[[],[],...,[]],{"speed":Float,"cashed":Bool,"action":Int,"reward":dict,"agent-reward":Float[],"agent-done":Bool}),we take its first item
# because after run env.reset(), the state stores the environmental data and it can not be edited
# we only need the state data -- the first ndarray
exp = {
"state": state,
"action": action,
"reward": reward,
"state_next": observation,
"done": done,
}
self._storage.append(exp)
state = observation
if done:
state = self.env.reset()
done = False
def buffer_add(self, exp):
# exp buffer: {exp}=={
# "state": state,
# "action": action,
# "reward": reward,
# "state_next": observation,
# "done": terminated,}
self._storage.append(exp)
if len(self._storage) > self.buffer_size:
self._storage.pop(0) # remove the last one in dict
def buffer_sample(self, n):
# random n samples from exp buffer
return random.sample(self._storage, n)
class DUELDQN(nn.Module):
def __init__(
self,
env,
state_dim,
action_dim,
lr=0.001,
gamma=0.99,
batch_size=5,
timestamp="",
):
"""
: param env: object, a gym environment
: param state_dim: int, size of state space
: param action_dim: int, size of action space
: param lr: float, learning rate
: param gamma: float, discount factor
: param batch_size: int, batch size for training
"""
super(DUELDQN, self).__init__()
self.env = env
self.env.reset()
self.timestamp = timestamp
self.test_env = copy.deepcopy(env) # for evaluation purpose
self.state_dim = state_dim
self.action_dim = action_dim
self.gamma = gamma
self.batch_size = batch_size
self.learn_step_counter = 0
self.is_rend =False
self.target_net = Net(self.state_dim, self.action_dim).to(device)
self.estimate_net = Net(self.state_dim, self.action_dim).to(device)
self.ReplayBuffer = Replay(1000, 100, self.state_dim, self.action_dim, env)
self.optimizer = torch.optim.Adam(self.estimate_net.parameters(), lr=lr)
def choose_action(self, state, epsilon=0.9):
# greedy strategy for choosing action
# state: ndarray environment state
# epsilon: float in [0,1]
# return: action we chosen
# turn to 1D float tensor -> [[a1,a2,a3,...,an]]
# we have to increase the speed of transformation ndarray to tensor if not it will spend a long time to train the model
# ndarray[[ndarray],...[ndarray]] => list[[ndarray],...[ndarray]] => ndarray[...] => tensor[...]
if type(state) == type((1,)):
state = state[0]
temp = [exp for exp in state]
target = []
target = np.array(target)
# n dimension to 1 dimension ndarray
for i in temp:
target = np.append(target, i)
state = torch.FloatTensor(target).to(device)
# randn() return a set of samples which are Gaussian distribution
# no argments -> return a float number
if np.random.randn() <= epsilon:
# when random number smaller than epsilon: do these things
# put a state array into estimate net to obtain their value array
# choose max values in value array -> obtain action
action_value = self.estimate_net(state)
action_value = action_value[:-1]
action = torch.argmax(action_value).item()
else:
# when random number bigger than epsilon: randomly choose a action
action = np.random.randint(0, self.action_dim)
return action
def calculate_duelling_q_values(self, duelling_q_network_output):
"""
Calculate the Q values using the duelling network architecture. This is equation (9) in the paper.
:param duelling_q_network_output: tensor, output of duelling q network
:return: Q values
"""
state_value = duelling_q_network_output[:, -1]
avg_advantage = torch.mean(duelling_q_network_output[:, :-1], dim=1)
q_values = state_value.unsqueeze(1) + (
duelling_q_network_output[:, :-1] - avg_advantage.unsqueeze(1)
)
return q_values
def train(self, num_episode):
# num_eposide: total turn number for train
loss_list = [] # loss set
avg_reward_list = [] # reward set
episode_reward = 0
# tqdm : a model for showing process bar
for episode in tqdm(range(1,int(num_episode)+1)):
done = False
state = self.env.reset()
each_loss = 0
step = 0
if type(state) == type((1,)):
state = state[0]
while not done:
if self.is_rend:
self.env.render()
step += 1
action = self.choose_action(state)
observation, reward, done, truncated, info = self.env.step(action)
exp = {
"state": state,
"action": action,
"reward": reward,
"state_next": observation,
"done": done,
}
self.ReplayBuffer.buffer_add(exp)
state = observation
# sample random batch in replay memory
exp_batch = self.ReplayBuffer.buffer_sample(self.batch_size)
# extract batch data
action_batch = torch.LongTensor(
[exp["action"] for exp in exp_batch]
).to(device)
reward_batch = torch.FloatTensor(
[exp["reward"] for exp in exp_batch]
).to(device)
done_batch = torch.FloatTensor(
[1 - exp["done"] for exp in exp_batch]
).to(device)
# Slow method -> Fast method when having more data
state_next_temp = [exp["state_next"] for exp in exp_batch]
state_temp = [exp["state"] for exp in exp_batch]
state_temp_list = np.array(state_temp)
state_next_temp_list = np.array(state_next_temp)
state_next_batch = torch.FloatTensor(state_next_temp_list).to(device)
state_batch = torch.FloatTensor(state_temp_list).to(device)
# reshape
state_batch = state_batch.reshape(self.batch_size, -1)
action_batch = action_batch.reshape(self.batch_size, -1)
reward_batch = reward_batch.reshape(self.batch_size, -1)
state_next_batch = state_next_batch.reshape(self.batch_size, -1)
done_batch = done_batch.reshape(self.batch_size, -1)
# get estimate Q value
estimate_net_output = self.estimate_net(state_batch)
estimate_Q = self.calculate_duelling_q_values(estimate_net_output)
estimate_Q = estimate_Q.gather(1, action_batch)
# get target Q value
max_action_idx = (
self.estimate_net(state_next_batch)[:, :-1].detach().argmax(1)
)
target_net_output = self.target_net(state_next_batch)
target_Q = self.calculate_duelling_q_values(target_net_output).gather(
1, max_action_idx.unsqueeze(1)
)
target_Q = reward_batch + done_batch * self.gamma * target_Q
# compute mse loss
loss = F.mse_loss(estimate_Q, target_Q)
each_loss += loss.item()
# update network
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# update target network
if self.learn_step_counter % 10 == 0:
self.target_net.load_state_dict(self.estimate_net.state_dict())
self.learn_step_counter += 1
reward, count = self.eval()
episode_reward += reward
# save
period = 1
if episode % period == 0:
each_loss /= step
episode_reward /= period
avg_reward_list.append(episode_reward)
loss_list.append(each_loss)
print("\nepisode:[{}/{}], \t each_loss: {:.4f}, \t eposide_reward: {:.3f}, \t step: {}".format(
episode, num_episode, each_loss, episode_reward, count
))
# epoch_reward = 0
path = PATH + "/" + self.timestamp
# create a new directory for saving
try:
os.makedirs(path)
except OSError:
pass
np.save(path + "/DUELING_DQN_LOSS.npy", loss_list)
np.save(path + "/DUELING_DQN_EACH_REWARD.npy", avg_reward_list)
torch.save(self.estimate_net.state_dict(), path + "/DUELING_DQN_params.pkl")
self.env.close()
return loss_list, avg_reward_list
def eval(self):
# evaluate the policy
count = 0
total_reward = 0
done = False
state = self.test_env.reset()
if type(state) == type((1,)):
state = state[0]
while not done:
action = self.choose_action(state, epsilon=1)
state_next, reward, done, _, info = self.test_env.step(action)
total_reward += reward
count += 1
state = state_next
return total_reward, count
if __name__ == "__main__":
# timestamp for saving
named_tuple = time.localtime() # get struct_time
time_string = time.strftime(
"%Y-%m-%d-%H-%M", named_tuple
) # have a folder of "date+time ex: 1209_20_36 -> December 12th, 20:36"
duel_dqn_object = DUELDQN(
env,
state_dim=105,
action_dim=3,
lr=0.001,
gamma=0.99,
batch_size=64,
timestamp=time_string,
)
path = PATH + "/" + time_string
# Train the policy
iterations = 10
avg_loss, avg_reward_list = duel_dqn_object.train(iterations)
np.save(path + "/DUELING_DQN_LOSS.npy", avg_loss)
np.save(path + "/DUELING_DQN_EACH_REWARD.npy", avg_reward_list)
torch.save(duel_dqn_object.estimate_net.state_dict(), path + "/DUELING_DQN_params.pkl")
torch.save(duel_dqn_object.state_dict(), path + "/DUELING_DQN_MODEL.pt")
DDQN+OtherChanges
三层2D卷积
# add CNN structure
class Net(nn.Module):
def __init__(self, state_dim, action_dim):
# initalize the network
# state_dim: state space
# action_dim: action space
super(Net, self).__init__()
# nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
# in_channel : input size = in_channels * in_N * in_N
# out_channel : define
# kernel_size : rules or define
# stride: step length
# padding: padding size
# out_N = (in_N - Kernel_size + 2 * Padding)/ Stride +1
self.cnn = nn.Sequential(
# the first 2D convolutional layer
nn.Conv2d(1, 4, kernel_size=3, padding=1),
nn.BatchNorm2d(4),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=1),
# the second 2D convolutional layer
nn.Conv2d(4, 8, kernel_size=3, padding=1),
nn.BatchNorm2d(8),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=1),
# the third 2D convolutional layer ---- my test and try or more convolutional layers
nn.Conv2d(8, 4, kernel_size=3, padding=1),
nn.BatchNorm2d(4),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=1),
)
hidden_nodes1 = 1024
hidden_nodes2 = 512
self.fc1 = nn.Linear(4 * 1 * 9, hidden_nodes1)
self.fc2 = nn.Linear(hidden_nodes1, hidden_nodes2)
self.fc3 = nn.Linear(hidden_nodes2, action_dim)
def forward(self, state):
# define forward pass of the actor
x = state # state
x = self.cnn(x)
x = x.view(x.size(0), -1)
# Relu function double
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
out = self.fc3(x)
return out
class Replay:
def __init__(self, buffer_size, init_length, state_dim, action_dim, env):
self.buffer_size = buffer_size
self.init_length = init_length
self.state_dim = state_dim
self.action_dim = action_dim
self.env = env
self._storage = []
self._init_buffer(init_length)
def _init_buffer(self, n):
# choose n samples state taken from random actions
state = self.env.reset()
for i in range(n):
action = self.env.action_space.sample()
observation, reward, done, truncated, info = self.env.step(action)
# gym.env.step(action): tuple (obversation, reward, terminated, truncated, info) can edit
# observation: numpy array [location]
# reward: reward for *action
# terminated: bool whether end
# truncated: bool whether overflow (from done)
# info: help/log/information
if type(state) == type((1,)):
state = state[0]
# if state is tuple (ndarray[[],[],...,[]],{"speed":Float,"cashed":Bool,"action":Int,"reward":dict,"agent-reward":Float[],"agent-done":Bool}),we take its first item
# because after run env.reset(), the state stores the environmental data and it can not be edited
# we only need the state data -- the first ndarray
exp = {
"state": state,
"action": action,
"reward": reward,
"state_next": observation,
"done": done,
}
self._storage.append(exp)
state = observation
if done:
state = self.env.reset()
done = False
def buffer_add(self, exp):
# exp buffer: {exp}=={
# "state": state,
# "action": action,
# "reward": reward,
# "state_next": observation,
# "done": terminated,}
self._storage.append(exp)
if len(self._storage) > self.buffer_size:
self._storage.pop(0) # remove the last one in dict
def buffer_sample(self, N):
# random n samples from exp buffer
return random.sample(self._storage, N)
class DOUBLEDQN_CNN(nn.Module):
def __init__(
self,
env, # gym environment
state_dim, # state size
action_dim, # action size
lr=0.001, # learning rate
gamma=0.99, # discount factor
batch_size=5, # batch size for each training
timestamp="", ):
# super class
super(DOUBLEDQN_CNN, self).__init__()
self.env = env
self.env.reset()
self.timestamp = timestamp
# for evaluation purpose
self.test_env = copy.deepcopy(env)
self.state_dim = state_dim
self.action_dim = action_dim
self.gamma = gamma
self.batch_size = batch_size
self.learn_step_counter = 0
self.is_rend = False
self.target_net = Net(self.state_dim, self.action_dim).to(device)
self.estimate_net = Net(self.state_dim, self.action_dim).to(device)
self.ReplayBuffer = Replay(1000, 100, self.state_dim, self.action_dim, env)
self.optimizer = torch.optim.Adam(self.estimate_net.parameters(), lr=lr)
def choose_action(self, state, epsilon=0.9):
# greedy strategy for choosing action
# state: ndarray environment state
# epsilon: float in [0,1]
# return: action we chosen
# turn to 1D float tensor -> [[a1,a2,a3,...,an]]
# we have to increase the speed of transformation ndarray to tensor if not it will spend a long time to train the model
# ndarray[[ndarray],...[ndarray]] => list[[ndarray],...[ndarray]] => ndarray[...] => tensor[...]
if type(state) == type((1,)):
state = state[0]
#TODO
state = (
torch.FloatTensor(state).to(device).reshape(-1, 1, 7, self.state_dim // 7)
)
if np.random.randn() <= epsilon:
action_value = self.estimate_net(state)
action = torch.argmax(action_value).item()
else:
action = np.random.randint(0, self.action_dim)
return action
def train(self, num_episode):
# num_eposide: total turn number for train
count_list = []
loss_list = []
total_reward_list = []
avg_reward_list = []
episode_reward = 0
rend = 0
for episode in tqdm(range(1,int(num_episode)+1)):
done = False
state = self.env.reset()
each_loss = 0
step = 0
if type(state) == type((1,)):
state = state[0]
while not done:
if self.is_rend:
self.env.render()
step += 1
action = self.choose_action(state)
observation, reward, done, truncated, info = self.env.step(action)
exp = {
"state": state,
"action": action,
"reward": reward,
"state_next": observation,
"done": done,
}
self.ReplayBuffer.buffer_add(exp)
state = observation
# sample random batch from replay memory
exp_batch = self.ReplayBuffer.buffer_sample(self.batch_size)
# extract batch data
action_batch = torch.LongTensor([exp["action"] for exp in exp_batch])
reward_batch = torch.FloatTensor([exp["reward"] for exp in exp_batch])
done_batch = torch.FloatTensor([1 - exp["done"] for exp in exp_batch])
# Slow method -> Fast method when having more data
state_next_temp = [exp["state_next"] for exp in exp_batch]
state_temp = [exp["state"] for exp in exp_batch]
state_temp_list = np.array(state_temp)
state_next_temp_list = np.array(state_next_temp)
state_next_batch = torch.FloatTensor(state_next_temp_list)
state_batch = torch.FloatTensor(state_temp_list)
# reshape
state_batch = state_batch.to(device).reshape(
self.batch_size, 1, 7, self.state_dim // 7
)
action_batch = action_batch.to(device).reshape(self.batch_size, -1)
reward_batch = reward_batch.to(device).reshape(self.batch_size, -1)
state_next_batch = state_next_batch.to(device).reshape(
self.batch_size, 1, 7, self.state_dim // 7
)
done_batch = done_batch.to(device).reshape(self.batch_size, -1)
# get estimate Q value
estimate_Q = self.estimate_net(state_batch).gather(1, action_batch)
# get target Q value
max_action_idx = self.estimate_net(state_next_batch).detach().argmax(1)
target_Q = reward_batch + done_batch * self.gamma * self.target_net(
state_next_batch
).gather(1, max_action_idx.unsqueeze(1))
# compute mse loss
loss = F.mse_loss(estimate_Q, target_Q)
each_loss += loss.item()
# update network
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# update target network
if self.learn_step_counter % 10 == 0:
self.target_net.load_state_dict(self.estimate_net.state_dict())
self.learn_step_counter += 1
reward, count = self.eval()
episode_reward += reward
# you can update these variables
if episode_reward % 100 == 0:
rend += 1
if rend % 5 == 0:
self.is_rend = True
else:
self.is_rend = False
# save
period = 1
if episode % period == 0:
each_loss /= step
episode_reward /= period
avg_reward_list.append(episode_reward)
loss_list.append(each_loss)
print("\nepisode:[{}/{}], \t each_loss: {:.4f}, \t eposide_reward: {:.3f}, \t step: {}".format(
episode, num_episode, each_loss, episode_reward, count
))
# epoch_reward = 0
# create a new directory for saving
path = PATH + "/" + self.timestamp
try:
os.makedirs(path)
except OSError:
pass
# saving as timestamp file
np.save(path + "/DOUBLE_DQN_CNN_LOSS.npy", loss_list)
np.save(path + "/DOUBLE_DQN_CNN_EACH_REWARD.npy", avg_reward_list)
torch.save(self.estimate_net.state_dict(), path + "/DOUBLE_DQN_CNN_params.pkl")
self.env.close()
return loss_list, avg_reward_list
def eval(self):
# evaluate the policy
count = 0
total_reward = 0
done = False
state = self.test_env.reset()
if type(state) == type((1,)):
state = state[0]
while not done:
action = self.choose_action(state, epsilon=1)
observation, reward, done, truncated, info = self.test_env.step(action)
total_reward += reward
count += 1
state = observation
return total_reward, count
if __name__ == "__main__":
# timestamp
named_tuple = time.localtime()
time_string = time.strftime("%Y-%m-%d-%H-%M", named_tuple)
print(time_string)
# create a doubledqn object
double_dqn_cnn_object = DOUBLEDQN_CNN(
env,
state_dim=105,
action_dim=3,
lr=0.001,
gamma=0.99,
batch_size=64,
timestamp=time_string,
)
# your chosen train times
iteration = 20
# start training
avg_loss, avg_reward_list = double_dqn_cnn_object.train(iteration)
path = PATH + "/" + time_string
np.save(path + "/DOUBLE_DQN_CNN_LOSS.npy", avg_loss)
np.save(path + "/DOUBLE_DQN_CNN_EACH_REWARD.npy", avg_reward_list)
torch.save(double_dqn_cnn_object.estimate_net.state_dict(), path + "/DOUBLE_DQN_CNN_params.pkl")
torch.save(double_dqn_cnn_object.state_dict(), path + "/DOUBLE_DQN_CNN_MODEL.pt")
经验池
class Net(nn.Module):
def __init__(self, state_dim, action_dim):
# state_dim: state space
# action_dim: action space
super(Net, self).__init__()
hidden_nodes1 = 1024
hidden_nodes2 = 512
self.fc1 = nn.Linear(state_dim, hidden_nodes1)
self.fc2 = nn.Linear(hidden_nodes1, hidden_nodes2)
self.fc3 = nn.Linear(hidden_nodes2, action_dim)
def forward(self, state):
# state: ndarray
x = state
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
out = self.fc3(x)
return out
# Priortized_Replay
class Prioritized_Replay:
def __init__(
self,
buffer_size,
init_length,
state_dim,
action_dim,
est_Net,
tar_Net,
gamma,
):
# state_dim: state space
# action_dim: action space
# env: env
self.buffer_size = buffer_size
self.init_length = init_length
self.state_dim = state_dim
self.action_dim = action_dim
self.gamma = gamma
self.is_rend = False
self.priority = deque(maxlen=buffer_size)
self._storage = []
self._init_buffer(init_length, est_Net, tar_Net)
def _init_buffer(self, n, est_Net, tar_Net):
# n: sample number
state = env.reset()
for i in range(n):
action = env.action_space.sample()
observation, reward, done, truncated, info = env.step(action)
# gym.env.step(action): tuple (obversation, reward, terminated, truncated, info) can edit
# observation: numpy array [location]
# reward: reward for *action
# terminated: bool whether end
# truncated: bool whether overflow (from done)
# info: help/log/information
if type(state) == type((1,)):
state = state[0]
# if state is tuple (ndarray[[],[],...,[]],{"speed":Float,"cashed":Bool,"action":Int,"reward":dict,"agent-reward":Float[],"agent-done":Bool}),we take its first item
# because after run env.reset(), the state stores the environmental data and it can not be edited
# we only need the state data -- the first ndarray
exp = {
"state": state,
"action": action,
"reward": reward,
"state_next": observation,
"done": done,
}
self.prioritize(est_Net, tar_Net, exp, alpha=0.6)
self._storage.append(exp)
state = observation
if done:
state = env.reset()
done = False
def buffer_add(self, exp):
# exp buffer: {exp}=={
# "state": state,
# "action": action,
# "reward": reward,
# "state_next": observation,
# "done": terminated,}
self._storage.append(exp)
if len(self._storage) > self.buffer_size:
self._storage.pop(0)
# add prioritize
def prioritize(self, est_Net, tar_Net, exp, alpha=0.6):
state = torch.FloatTensor(exp["state"]).to(device).reshape(-1)
q = est_Net(state)[exp["action"]].detach().cpu().numpy()
q_next = exp["reward"] + self.gamma * torch.max(est_Net(state).detach())
# TD error
p = (np.abs(q_next.cpu().numpy() - q) + (np.e ** -10)) ** alpha
self.priority.append(p.item())
def get_prioritized_batch(self, N):
prob = self.priority / np.sum(self.priority)
# random.choices(list,weights=None,*,cum_weights=None,k=1)
# weight: set the chosen item rate
# k: times for choice
# cum_weight: sum of weight
sample_idxes = random.choices(range(len(prob)), k=N, weights=prob)
importance = (1 / prob) * (1 / len(self.priority))
sampled_importance = np.array(importance)[sample_idxes]
sampled_batch = np.array(self._storage)[sample_idxes]
return sampled_batch.tolist(), sampled_importance
def buffer_sample(self, N):
# random n samples from exp buffer
return random.sample(self._storage, N)
class DDQNPB(nn.Module):
def __init__(
self,
env,
state_dim,
action_dim,
lr=0.001,
gamma=0.99,
buffer_size=1000,
batch_size=50,
beta=1,
beta_decay=0.995,
beta_min=0.01,
timestamp="",
):
# env: environment
# state_dim: state space
# action_dim: action space
# lr: learning rate
# gamma: loss/discount factor
# batch_size: training batch size
super(DDQNPB, self).__init__()
self.timestamp = timestamp
self.test_env = copy.deepcopy(env) # for evaluation purpose
self.state_dim = state_dim
self.action_dim = action_dim
self.gamma = gamma
self.batch_size = batch_size
self.learn_step_counter = 0
self.target_net = Net(self.state_dim, self.action_dim).to(device)
self.estimate_net = Net(self.state_dim, self.action_dim).to(device)
self.optimizer = torch.optim.Adam(self.estimate_net.parameters(), lr=lr)
self.ReplayBuffer = Prioritized_Replay(
buffer_size,
100,
self.state_dim,
self.action_dim,
self.estimate_net,
self.target_net,
gamma,
)
self.priority = self.ReplayBuffer.priority
# NOTE: right here beta is equal to (1-beta) in most of website articles, notation difference
# start from 1 and decay
self.beta = beta
self.beta_decay = beta_decay
self.beta_min = beta_min
def choose_action(self, state, epsilon=0.9):
# state: env state
# epsilon: [0,1]
# return action you choose
# get a 1D array
if type(state) == type((1,)):
state = state[0]
temp = [exp for exp in state]
target = []
target = np.array(target)
# n dimension to 1 dimension ndarray
for i in temp:
target = np.append(target, i)
state = torch.FloatTensor(target).to(device)
if np.random.randn() <= epsilon:
action_value = self.estimate_net(state)
action = torch.argmax(action_value).item()
else:
action = np.random.randint(0, self.action_dim)
return action
def train(self, num_episode):
# num_epochs: training times
loss_list = []
avg_reward_list = []
episode_reward = 0
for episode in tqdm(range(1,int(num_episode)+1)):
done = False
state = env.reset()
each_loss = 0
step = 0
rend = 0
if type(state) == type((1,)):
state = state[0]
while not done:
action = self.choose_action(state)
observation, reward, done, _, info = env.step(action)
# self.env.render()
# store experience to replay memory
exp = {
"state": state,
"action": action,
"reward": reward,
"state_next": observation,
"done": done,
}
self.ReplayBuffer.buffer_add(exp)
state = observation
# importance weighting
if self.beta > self.beta_min:
self.beta *= self.beta_decay
# sample random batch from replay memory
exp_batch, importance = self.ReplayBuffer.get_prioritized_batch(
self.batch_size
)
importance = torch.FloatTensor(importance ** (1 - self.beta)).to(device)
# extract batch data
action_batch = torch.LongTensor(
[exp["action"] for exp in exp_batch]
).to(device)
reward_batch = torch.FloatTensor(
[exp["reward"] for exp in exp_batch]
).to(device)
done_batch = torch.FloatTensor(
[1 - exp["done"] for exp in exp_batch]
).to(device)
# Slow method -> Fast method when having more data
state_next_temp = [exp["state_next"] for exp in exp_batch]
state_temp = [exp["state"] for exp in exp_batch]
state_temp_list = np.array(state_temp)
state_next_temp_list = np.array(state_next_temp)
state_next_batch = torch.FloatTensor(state_next_temp_list).to(device)
state_batch = torch.FloatTensor(state_temp_list).to(device)
# reshape
state_batch = state_batch.reshape(self.batch_size, -1)
action_batch = action_batch.reshape(self.batch_size, -1)
reward_batch = reward_batch.reshape(self.batch_size, -1)
state_next_batch = state_next_batch.reshape(self.batch_size, -1)
done_batch = done_batch.reshape(self.batch_size, -1)
# get estimate Q value
estimate_Q = self.estimate_net(state_batch).gather(1, action_batch)
# get target Q value
max_action_idx = self.estimate_net(state_next_batch).detach().argmax(1)
target_Q = reward_batch + done_batch * self.gamma * self.target_net(
state_next_batch
).gather(1, max_action_idx.unsqueeze(1))
# compute mse loss
# loss = F.mse_loss(estimate_Q, target_Q)
loss = torch.mean(
torch.multiply(torch.square(estimate_Q - target_Q), importance)
)
each_loss += loss.item()
# update network
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
#TODO
# update target network
if self.learn_step_counter % 10 == 0:
# self.update_target_networks()
self.target_net.load_state_dict(self.estimate_net.state_dict())
self.learn_step_counter += 1
step += 1
env.render()
# you can update these variables
# if episode_reward % 100 == 0:
# rend += 1
# if rend % 5 == 0:
# self.is_rend = True
# else:
# self.is_rend = False
reward, count = self.eval()
episode_reward += reward
# save
period = 1
if episode % period == 0:
# log
each_loss /= period
episode_reward /= period
avg_reward_list.append(episode_reward)
loss_list.append(each_loss)
print(
"\nepoch: [{}/{}], \tavg loss: {:.4f}, \tavg reward: {:.3f}, \tsteps: {}".format(
episode, num_episode, each_loss, episode_reward, count
)
)
# episode_reward = 0
# create a new directory for saving
path = PATH + "/" + self.timestamp
try:
os.makedirs(path)
except OSError:
pass
np.save(path + "/DOUBLE_DQN_PRIORITIZED_LOSS.npy", loss_list)
np.save(path + "/DOUBLE_DQN_PRIORITIZED_REWARD.npy", avg_reward_list)
torch.save(self.estimate_net.state_dict(),path + "/DOUBLE_DQN_PRIORITIZED_params.pkl")
env.close()
return loss_list, avg_reward_list
def eval(self):
"""
Evaluate the policy
"""
count = 0
total_reward = 0
done = False
state = self.test_env.reset()
if type(state) == type((1,)):
state = state[0]
while not done:
action = self.choose_action(state, epsilon=1)
observation, reward, done, truncated, info = self.test_env.step(action)
total_reward += reward
count += 1
state = observation
return total_reward, count
if __name__ == "__main__":
# timestamp for saving
named_tuple = time.localtime() # get struct_time
time_string = time.strftime("%Y-%m-%d-%H-%M", named_tuple)
double_dqn_prioritized_object = DDQNPB(
env,
state_dim=105,
action_dim=3,
lr=0.001,
gamma=0.99,
buffer_size=1000,
batch_size=64,
timestamp=time_string,
)
# Train the policy
iterations = 10000
avg_loss, avg_reward_list = double_dqn_prioritized_object.train(iterations)
path = PATH + "/" + time_string
np.save(path + "/DOUBLE_DQN_PRIORITIZED_LOSS.npy", avg_loss)
np.save(path + "/DOUBLE_DQN_PRIORITIZED_REWARD.npy", avg_reward_list)
torch.save(double_dqn_prioritized_object.estimate_net.state_dict(), path + "/DOUBLE_DQN_PRIORITIZED_params.pkl")
torch.save(double_dqn_prioritized_object.state_dict(), path + "/DOUBLE_DQN_PRIORITIZED_MODEL.pt")
有些东西可以自己改掉,自己调出的bug才是好bug!(大雾)
写在后面:
关于自定义环境,刚刚花30分钟研究了一下,官方写的教程稀烂(狗头),我自己得到的攻略如下:
- 找到你的highway-env安装包位置,我的在:E:\formalFiles\Anaconda3-2020.07\envs\autodrive_38\Lib\site-packages\highway_env
- 在highway-env里的envs可以看到多个场景的定义文件,此处拿出intersection_env.py举例,其他的同理。新建一个文件test_env.py,把intersection_env.py的所有内容复制粘贴到里面。
- 在test_env.py里,重命名如下:
class test(AbstractEnv): # # ACTIONS: Dict[int, str] = { # 0: 'SLOWER', # 1: 'IDLE', # 2: 'FASTER' # } ACTIONS: Dict[int, str] = { 0: 'LANE_LEFT', 1: 'IDLE', 2: 'LANE_RIGHT', 3: 'FASTER', 4: 'SLOWER' }
删除除了第一个class以外的所有class定义。这里是把动作区间改成5个。
- 在envs/_init_.py的末尾加上
from highway_env.envs.test_env import *
- 在highway-env文件夹里找到一个单独的_init_.py,不是上一步的python文件!修改如下:
def register_highway_envs(): """Import the envs module so that envs register themselves.""" # my test environment register( id='test-v0',# 引用名 entry_point='highway_env.envs:test'#环境类名 )
- 修改奖励,来到你的定义环境文件highway-env/envs/test_env.py里面,看到_reward函数,以及和它有关的_agent_reward函数等,可自行改掉算子。utils.py中有函数lmap()。
def _reward(self, action: int) -> float: """Aggregated reward, for cooperative agents.""" return sum(self._agent_reward(action, vehicle) for vehicle in self.controlled_vehicles ) / len(self.controlled_vehicles) def _agent_reward(self, action: int, vehicle: Vehicle) -> float: """Per-agent reward signal.""" rewards = self._agent_rewards(action, vehicle) reward = sum(self.config.get(name, 0) * reward for name, reward in rewards.items()) reward = self.config["arrived_reward"] if rewards["arrived_reward"] else reward reward *= rewards["on_road_reward"] if self.config["normalize_reward"]: reward = utils.lmap(reward, [self.config["collision_reward"], self.config["arrived_reward"]], [0, 1]) return reward def _agent_rewards(self, action: int, vehicle: Vehicle) -> Dict[Text, float]: """Per-agent per-objective reward signal.""" scaled_speed = utils.lmap(vehicle.speed, self.config["reward_speed_range"], [0, 1]) return { "collision_reward": vehicle.crashed, "high_speed_reward": np.clip(scaled_speed, 0, 1), "arrived_reward": self.has_arrived(vehicle), "on_road_reward": vehicle.on_road }
- 引用自定义环境如下:
import highway-env import gym env = gym.make("test-v0") env.reset()
- 我自定义的环境文件,个人设定,不代表最佳结果:
from typing import Dict, Tuple, Text import numpy as np from highway_env import utils from highway_env.envs.common.abstract import AbstractEnv, MultiAgentWrapper from highway_env.road.lane import LineType, StraightLane, CircularLane, AbstractLane from highway_env.road.regulation import RegulatedRoad from highway_env.road.road import RoadNetwork from highway_env.vehicle.kinematics import Vehicle from highway_env.vehicle.controller import ControlledVehicle class test(AbstractEnv): # # ACTIONS: Dict[int, str] = { # 0: 'SLOWER', # 1: 'IDLE', # 2: 'FASTER' # } ACTIONS: Dict[int, str] = { 0: 'LANE_LEFT', 1: 'IDLE', 2: 'LANE_RIGHT', 3: 'FASTER', 4: 'SLOWER' } ACTIONS_INDEXES = {v: k for k, v in ACTIONS.items()} @classmethod def default_config(cls) -> dict: config = super().default_config() config.update({ "observation": { "type": "Kinematics", "vehicles_count": 15, "features": ["presence", "x", "y", "vx", "vy", "cos_h", "sin_h"], "features_range": { "x": [-100, 100], "y": [-100, 100], "vx": [-20, 20], "vy": [-20, 20], }, "absolute": True, "flatten": False, "observe_intentions": False }, "action": { "type": "DiscreteMetaAction", "longitudinal": True, "lateral": True, "target_speeds": [0, 4.5, 9] }, "duration": 13, # [s] "destination": "o1", "controlled_vehicles": 1, "initial_vehicle_count": 10, "spawn_probability": 0.6, "screen_width": 600, "screen_height": 600, "centering_position": [0.5, 0.6], "scaling": 5.5 * 1.3, "collision_reward": -10, "high_speed_reward": 2, "arrived_reward": 5, "reward_speed_range": [7.0, 9.0],# change "normalize_reward": False, "offroad_terminal": False }) return config def _reward(self, action: int) -> float: """Aggregated reward, for cooperative agents.""" return sum(self._agent_reward(action, vehicle) for vehicle in self.controlled_vehicles ) / len(self.controlled_vehicles) def _rewards(self, action: int) -> Dict[Text, float]: """Multi-objective rewards, for cooperative agents.""" agents_rewards = [self._agent_rewards(action, vehicle) for vehicle in self.controlled_vehicles] return { name: sum(agent_rewards[name] for agent_rewards in agents_rewards) / len(agents_rewards) for name in agents_rewards[0].keys() } # edit your reward def _agent_reward(self, action: int, vehicle: Vehicle) -> float: """Per-agent reward signal.""" rewards = self._agent_rewards(action, vehicle) reward = sum(self.config.get(name, 0) * reward for name, reward in rewards.items()) reward = self.config["arrived_reward"] if rewards["arrived_reward"] else reward reward *= rewards["on_road_reward"] if self.config["normalize_reward"]: reward = utils.lmap(reward, [self.config["collision_reward"], self.config["arrived_reward"]], [0, 1]) return reward def _agent_rewards(self, action: int, vehicle: Vehicle) -> Dict[Text, float]: """Per-agent per-objective reward signal.""" scaled_speed = utils.lmap(vehicle.speed, self.config["reward_speed_range"], [0, 1]) return { "collision_reward": vehicle.crashed, "high_speed_reward": np.clip(scaled_speed, 0, 1), "arrived_reward": self.has_arrived(vehicle), "on_road_reward": vehicle.on_road } def _is_terminated(self) -> bool: return any(vehicle.crashed for vehicle in self.controlled_vehicles) \ or all(self.has_arrived(vehicle) for vehicle in self.controlled_vehicles) \ or (self.config["offroad_terminal"] and not self.vehicle.on_road) def _agent_is_terminal(self, vehicle: Vehicle) -> bool: """The episode is over when a collision occurs or when the access ramp has been passed.""" return (vehicle.crashed or self.has_arrived(vehicle) or self.time >= self.config["duration"]) def _is_truncated(self) -> bool: return def _info(self, obs: np.ndarray, action: int) -> dict: info = super()._info(obs, action) info["agents_rewards"] = tuple(self._agent_reward(action, vehicle) for vehicle in self.controlled_vehicles) info["agents_dones"] = tuple(self._agent_is_terminal(vehicle) for vehicle in self.controlled_vehicles) return info def _reset(self) -> None: self._make_road() self._make_vehicles(self.config["initial_vehicle_count"]) def step(self, action: int) -> Tuple[np.ndarray, float, bool, bool, dict]: obs, reward, terminated, truncated, info = super().step(action) self._clear_vehicles() self._spawn_vehicle(spawn_probability=self.config["spawn_probability"]) return obs, reward, terminated, truncated, info def _make_road(self) -> None: """ Make an 4-way intersection. The horizontal road has the right of way. More precisely, the levels of priority are: - 3 for horizontal straight lanes and right-turns - 1 for vertical straight lanes and right-turns - 2 for horizontal left-turns - 0 for vertical left-turns The code for nodes in the road network is: (o:outer | i:inner + [r:right, l:left]) + (0:south | 1:west | 2:north | 3:east) :return: the intersection road """ lane_width = AbstractLane.DEFAULT_WIDTH right_turn_radius = lane_width + 5 # [m} left_turn_radius = right_turn_radius + lane_width # [m} outer_distance = right_turn_radius + lane_width / 2 access_length = 50 + 50 # [m] net = RoadNetwork() n, c, s = LineType.NONE, LineType.CONTINUOUS, LineType.STRIPED for corner in range(4): angle = np.radians(90 * corner) is_horizontal = corner % 2 priority = 3 if is_horizontal else 1 rotation = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) # Incoming start = rotation @ np.array([lane_width / 2, access_length + outer_distance]) end = rotation @ np.array([lane_width / 2, outer_distance]) net.add_lane("o" + str(corner), "ir" + str(corner), StraightLane(start, end, line_types=[s, c], priority=priority, speed_limit=10)) # Right turn r_center = rotation @ (np.array([outer_distance, outer_distance])) net.add_lane("ir" + str(corner), "il" + str((corner - 1) % 4), CircularLane(r_center, right_turn_radius, angle + np.radians(180), angle + np.radians(270), line_types=[n, c], priority=priority, speed_limit=10)) # Left turn l_center = rotation @ (np.array([-left_turn_radius + lane_width / 2, left_turn_radius - lane_width / 2])) net.add_lane("ir" + str(corner), "il" + str((corner + 1) % 4), CircularLane(l_center, left_turn_radius, angle + np.radians(0), angle + np.radians(-90), clockwise=False, line_types=[n, n], priority=priority - 1, speed_limit=10)) # Straight start = rotation @ np.array([lane_width / 2, outer_distance]) end = rotation @ np.array([lane_width / 2, -outer_distance]) net.add_lane("ir" + str(corner), "il" + str((corner + 2) % 4), StraightLane(start, end, line_types=[s, n], priority=priority, speed_limit=10)) # Exit start = rotation @ np.flip([lane_width / 2, access_length + outer_distance], axis=0) end = rotation @ np.flip([lane_width / 2, outer_distance], axis=0) net.add_lane("il" + str((corner - 1) % 4), "o" + str((corner - 1) % 4), StraightLane(end, start, line_types=[n, c], priority=priority, speed_limit=10)) road = RegulatedRoad(network=net, np_random=self.np_random, record_history=self.config["show_trajectories"]) self.road = road def _make_vehicles(self, n_vehicles: int = 10) -> None: """ Populate a road with several vehicles on the highway and on the merging lane :return: the ego-vehicle """ # Configure vehicles vehicle_type = utils.class_from_path(self.config["other_vehicles_type"]) vehicle_type.DISTANCE_WANTED = 5 # Low jam distance vehicle_type.COMFORT_ACC_MAX = 6 vehicle_type.COMFORT_ACC_MIN = -3 # Random vehicles simulation_steps = 3 for t in range(n_vehicles - 1): self._spawn_vehicle(np.linspace(0, 80, n_vehicles)[t]) for _ in range(simulation_steps): [(self.road.act(), self.road.step(1 / self.config["simulation_frequency"])) for _ in range(self.config["simulation_frequency"])] # Challenger vehicle self._spawn_vehicle(60, spawn_probability=1, go_straight=True, position_deviation=0.1, speed_deviation=0) # Controlled vehicles self.controlled_vehicles = [] for ego_id in range(0, self.config["controlled_vehicles"]): ego_lane = self.road.network.get_lane(("o{}".format(ego_id % 4), "ir{}".format(ego_id % 4), 0)) destination = self.config["destination"] or "o" + str(self.np_random.randint(1, 4)) ego_vehicle = self.action_type.vehicle_class( self.road, ego_lane.position(60 + 5*self.np_random.normal(1), 0), speed=ego_lane.speed_limit, heading=ego_lane.heading_at(60)) try: ego_vehicle.plan_route_to(destination) ego_vehicle.speed_index = ego_vehicle.speed_to_index(ego_lane.speed_limit) ego_vehicle.target_speed = ego_vehicle.index_to_speed(ego_vehicle.speed_index) except AttributeError: pass self.road.vehicles.append(ego_vehicle) self.controlled_vehicles.append(ego_vehicle) for v in self.road.vehicles: # Prevent early collisions if v is not ego_vehicle and np.linalg.norm(v.position - ego_vehicle.position) < 20: self.road.vehicles.remove(v) def _spawn_vehicle(self, longitudinal: float = 0, position_deviation: float = 1., speed_deviation: float = 1., spawn_probability: float = 0.6, go_straight: bool = False) -> None: if self.np_random.uniform() > spawn_probability: return route = self.np_random.choice(range(4), size=2, replace=False) route[1] = (route[0] + 2) % 4 if go_straight else route[1] vehicle_type = utils.class_from_path(self.config["other_vehicles_type"]) vehicle = vehicle_type.make_on_lane(self.road, ("o" + str(route[0]), "ir" + str(route[0]), 0), longitudinal=(longitudinal + 5 + self.np_random.normal() * position_deviation), speed=8 + self.np_random.normal() * speed_deviation) for v in self.road.vehicles: if np.linalg.norm(v.position - vehicle.position) < 15: return vehicle.plan_route_to("o" + str(route[1])) vehicle.randomize_behavior() self.road.vehicles.append(vehicle) return vehicle def _clear_vehicles(self) -> None: is_leaving = lambda vehicle: "il" in vehicle.lane_index[0] and "o" in vehicle.lane_index[1] \ and vehicle.lane.local_coordinates(vehicle.position)[0] \ >= vehicle.lane.length - 4 * vehicle.LENGTH self.road.vehicles = [vehicle for vehicle in self.road.vehicles if vehicle in self.controlled_vehicles or not (is_leaving(vehicle) or vehicle.route is None)] def has_arrived(self, vehicle: Vehicle, exit_distance: float = 25) -> bool: return "il" in vehicle.lane_index[0] \ and "o" in vehicle.lane_index[1] \ and vehicle.lane.local_coordinates(vehicle.position)[0] >= exit_distance
哦,都要一个可视化是吧?来了来了。
在test-v0下,用double_dqn.py训练的图:(action_dim==5)
目前是单智能体,后续的多智能体需要调整输入的数据和动作,以及控制小车的数量,做为后续的待定改进点。
其他?等我写好 多智能体 0-0!
待好心人补充....毕竟这里是无人区啊(悲)
文章来源:https://www.toymoban.com/news/detail-415197.html
终有一日,我会成为神一样的提纳里先生!文章来源地址https://www.toymoban.com/news/detail-415197.html
到了这里,关于2023年highway-env更新之后的使用记录(含DDQN,DuelingDQN,DDQN+OtherChanges) 入门到入土,再踩坑就不玩原神了的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!