【无功优化】基于多目标差分进化算法的含DG配电网无功优化模型【IEEE33节点】(Matlab代码实现)

这篇具有很好参考价值的文章主要介绍了【无功优化】基于多目标差分进化算法的含DG配电网无功优化模型【IEEE33节点】(Matlab代码实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章讲解


💥1 概述

多 目标无功优化可在 目标 函数 中兼顾经济性和 电压稳定性,引起了研究人员的广泛关注。与单 目标无功优化 问题 的本质区别在于,多 目标无功优化的解不是唯一的,即不存在使经济性和 电压

稳定性同时达到最优的解,而是存在一个非劣解的集合,称为帕累托(Pareto)最优集,集合中的元素就所有 目标而言是不可 比较的。当前多 目标无功优化问题的求解方法大致可分为以下 2类 :

1)先验法 。通过事先设置反映各 目标偏好程度 的参数将多 目标无功优化模 型转化成单 目标优

化 问题进行求解,常用 的方法有线性加权法[11-12]和模糊集理论[13-14]。这类方法虽然便于计算,但存在明显的缺点:权重 向量或隶属度函数难 以确定;每次计算只能得到一个控制方案,若要得到一组近似的 Pareto最优解 ,则需进行多次计算;对 Pareto前沿的形状敏感 ,若问题 的 Pareto前沿是非凸集,则很难搜索到完整的 Pareto最优集。

2)后验法。该方法 的特 点是无需事先给出 目标函数之 间的优先关系 ,运行人员只需从 Pareto最

优集 中选择出满足要求 的控制方案。因此快速地获取具有 良好分布且范围宽广 的 Pareto前沿成为关键 。文献 [15.16]分 别应用 强度 Pareto 进化 算法 (strengthParetoevolutionaryalgorithm,SPEA)及 其改进版本 SPEA2来求得 Pareto最优集;文献提出采用 NSGA—II来获取 Pareto前沿 ;另外 以 PSO为框架的多 目标优化技术也被用来求解多 目标无功优化问题。然而上述算法常存在易陷入局部最优 、非劣解分布不均匀、控制参数难以选择等缺 陷。

多目标差分优化算法见第4部分。

📚2 运行结果

图1为改进的IEEE33节点配电系统,在保持线路参数不变的前提下,增加﹖组并联补偿电容器和2个分布式电源。
【无功优化】基于多目标差分进化算法的含DG配电网无功优化模型【IEEE33节点】(Matlab代码实现)

 假定每个分布式电源能发出1MW的有功功率,且这②个分布式电源无功出力在-100~500 kvar区间内而且可调节;并联补偿电容器的补偿容量定为150 kvarx4和150 kvar×7。
 

【无功优化】基于多目标差分进化算法的含DG配电网无功优化模型【IEEE33节点】(Matlab代码实现)

 部分代码:

% data=[1    2    0.0922    0.047    100    60    0
% 2    3    0.493    0.2511    (90-1000)    40    0
% 3    4    0.366    0.1864    120    80    0
% 4    5    0.3811    0.1941    60    30    0
% 5    6    0.819    0.707    60    20    0
% 6    7    0.1872    0.6188    200    (100-0*150)    0
% 7    8    0.7114    0.2351    200    100    0
% 8    9    1.03    0.74    60    20    0
% 9    10    1.044    0.74    60    20    0
% 10    11    0.1966    0.065    45    30    0
% 11    12    0.3744    0.1238    60    35    0
% 12    13    1.468    1.155    60    35    0
% 13    14    0.5416    0.7129    120    80    0
% 14    15    0.591    0.526    60    10    0
% 15    16    0.7463    0.545    60    20    0
% 16    17    1.289    1.721    60    20    0
% 17    18    0.372    0.574    90    40    0
% 2    19    0.164    0.1565    90    40    0
% 19    20    1.5042    1.3554    90    40    0
% 20    21    0.4095    0.4784    90    40    0
% 21    22    0.7089    0.9373    90    40    0
% 3    23    0.4512    0.3083    90    50    0
% 23    24    0.898    0.7091    420    200    0
% 24    25    0.896    0.7011    420    200    0
% 6    26    0.203    0.1034    60    25    0
% 26    27    0.2842    0.1447    60    25    0
% 27    28    1.059    0.9337    60    20    0
% 28    29    0.8042    0.7006    120    70    0
% 29    30    0.5075    0.2585    200    600    0
% 30    31    0.9744    0.963    150    70    0
% 31    32    0.3105    0.3619    210    (100-0*150)    0
% 32    33    0.341    0.5362    60    40    0
% 8    21    2    2    0    0    0
% 9    15    2    2    0    0    0
% 12    22    2    2    0    0    0
% 18    33    0.5    0.5    0    0    0
% 25    29    0.5    0.5    0    0    0
% ];

Y=1./Z;
Y00=zeros(1,33);
Sload=zeros(1,33);%各个母线负荷
for j=1:32
    Sload(data(j,2))=data(j,5)+data(j,6)*i;
end
Sload=Sload/1000;
PQDGnun=0;
PVnun=0;
PQVDGnun=0;
PQVDGposition=[31];
PQVrePower=[0.5];
PQVmaxmin=[0.5;0];
PVposition=[22];%PV节点的位置
PVrePower=[0.5];
PVmaxmin=[0.5;0];%PV节点无功上下限
PVreacPower=[0.25]; %PV节点无功补偿的初始无功功率
PQDGposition=[7];
PQDGpower=[0.5+0.5i];
U=zeros(1,33)+10;%设置节点的电压初值
U(1)=12.66;
if PQVDGnun>0
   for j=1:PQVDGnun
        PQVreacPower(j)=-U(PQVDGposition(j))*U(PQVDGposition(j))/38+(-U(PQVDGposition(j))*U(PQVDGposition(j))+sqrt(U(PQVDGposition(j))^4-4*real(PQVrePower(j))*real(PQVrePower(j))*1.95*1.95))/(2*1.95);
   end
else
    PQVreacPower=0.5;%0.5没有任何意义,在后面也没有用到这个数字
end
 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]邱威,张建华,刘念.自适应多目标差分进化算法在计及电压稳定性的无功优化中的应用[J].电网技术,2011,35(08):81-87.DOI:10.13335/j.1000-3673.pst.2011.08.021.文章来源地址https://www.toymoban.com/news/detail-415676.html

🌈4 Matlab代码、数据、文章讲解

到了这里,关于【无功优化】基于多目标差分进化算法的含DG配电网无功优化模型【IEEE33节点】(Matlab代码实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于差分进化算法的微电网调度研究(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 全球能源

    2024年02月06日
    浏览(53)
  • 不平衡电网条件下基于变频器DG操作的多目标优化研究(Matlab代码&Simulink实现)

    目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码Simulink实现文章讲解 文献来源: 最近,利用并网转换器(GCC)克服电网故障并支撑电网电压已成为电网规范中反映的主要要求。本文提出了一种新颖的参考电流产生方案,该方案通过使用四个控制参数注入一组适当的

    2024年02月14日
    浏览(49)
  • 基于小生境粒子群优化算法的考虑光伏波动性的主动配电网有功无功协调优化(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 1.1 基本粒子群算法(PSO) 1.2 小生境技术  1.3 数学模型搭建

    2023年04月22日
    浏览(73)
  • 机器学习中四类进化算法的详解(遗传算法、差分进化算法、协同进化算法、分布估计算法)

    GA算法原理 首先我们来介绍进化算法的先驱遗传算法,遗传算法(Genetic Algorithm,简称GA)是一种最基本的进化算法,它是模拟达尔文生物进化理论的一种优化模型,最早由J.Holland教授于1975年提出。遗传算法中种群分每个个体都是解空间上的一个可行解,通过模拟生物的进化

    2024年02月09日
    浏览(44)
  • 【能量管理系统( EMS )】基于粒子群算法对光伏、蓄电池等分布式能源DG进行规模优化调度研究(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 能量管理

    2024年02月15日
    浏览(54)
  • 【多目标进化优化】MOPSO 原理与代码实现

    🎉 博主相信: 有足够的积累,并且一直在路上,就有无限的可能!!! 👨‍🎓 个人主页: 青年有志的博客 💯 Gitee 源码地址: https://gitee.com/futurelqh/Multi-objective-evolutionary-optimization 前驱知识 粒子群优化算法 PSO: https://blog.csdn.net/qq_46450354/article/details/127464089 Pareto 最优解

    2024年02月05日
    浏览(46)
  • 多目标优化算法:基于非支配排序的鱼鹰优化算法(NSOOA)MATLAB

    鱼鹰优化算法(Osprey optimization algorithm,OOA)由Mohammad Dehghani 和 Pavel Trojovský于2023年提出,其模拟鱼鹰的捕食行为。具有寻优能力强、收敛速度快等特点。 鱼鹰优化算法的流程如下: 1. 初始化:设定算法参数,包括鱼鹰数量、迭代次数、搜索空间等。 2. 阶段一:定位和捕鱼

    2024年01月19日
    浏览(51)
  • 基于模型预测算法的含储能微网双层能量管理模型

    代码主要做的是一个微网双层优化调度模型,微网聚合单元包括风电、光伏、储能以及超级电容器,在微网的运行成本层面考虑了电池的退化成本,对其全寿命周期进行建模,并转换为实时相关的短期成本,采用双层调度模型,上层为EMS系统最小化总运行成本,下层为EMS消除

    2024年04月12日
    浏览(32)
  • Matlab|基于多目标粒子群算法的微电网优化调度(多约束多目标智能算法模板)

    目录 1 主要内容 2 部分代码 3 程序结果 4 下载链接 程序针对微电网优化模型进行优化求解,文件夹共包含四部分内容,分别是:原始多目标粒子群、改进多目标粒子群、改进多目标粒子群(勘误)和改进多目标粒子群(多约束模板),满足各位同学对于多目标粒子群算法各

    2024年03月13日
    浏览(83)
  • 基于遗传算法的多目标优化进行0-1规划

    第一次写博客不知道从哪里下手, 之所以想开始博客写作一方面是想记录自己写过的代码,另一方面也分享一下自己在编程的时候遇到的问题,也希望可以帮助到各位。 之所以做基于遗传算法的多目标优化进行0-1规划,是因为在做数学建模2021年C题的时候遇到了一个规划题,

    2024年02月07日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包