CesiumJS 源码杂谈 - 从光到 Uniform

这篇具有很好参考价值的文章主要介绍了CesiumJS 源码杂谈 - 从光到 Uniform。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录
  • 1. 有什么光
  • 2. 光如何转换成 Uniform 以及何时被调用
    • 2.1. 统一值状态对象(UniformState)
    • 2.2. 上下文(Context)执行 DrawCommand
    • 2.3. 对 WebGL Uniform 值的封装
    • 2.4. 自动统一值(AutomaticUniforms)
  • 3. 在着色器中如何使用
    • 3.1. 点云
    • 3.2. 冯氏着色法
    • 3.3. 地球
    • 3.4. 模型架构中的光着色阶段
    • 3.5. 后记

之前对实时渲染(RealTimeRendering)的殿堂就十分向往,也有简单了解过实时渲染中的光,无奈一直没能系统学习。鉴于笔者已经有一点 CesiumJS 源码基础,所以就抽了一个周末跟了跟 CesiumJS 中的光照初步,在简单的代码追踪后,发现想系统学习光照材质,仍然是需要 RTR 知识的,这次仅仅了解了光在 CesiumJS 底层中是如何从 API 传递到 WebGL 着色器中去的,为之后深入研究打下基础。

1. 有什么光

CesiumJS 支持的光的类型比较少,默认场景光就一个太阳光:

// Scene 类构造函数中

this.light = new SunLight();

从上面这代码可知,CesiumJS 目前场景中只支持加入一个光源。

查阅 API,可得知除了 SubLight 之外,还有一个 DirectionalLight,即方向光。

官方示例代码《Lighting》中就使用了方向光来模拟手电筒效果(flashLight)、月光效果(moonLight)、自定义光效果。

方向光比太阳光多出来一个必选的方向属性:

const flashLight = new DirectionalLight({
  direction: scene.camera.directionWC // 每帧都不一样,手电筒一直沿着相机视线照射
})

这个 direction 属性是一个单位向量即可(模长是 1)。

说起来归一化、规范化、标准化好像都能在网上找到与单位向量类似的意思,都是向量除以模长。

可见,CesiumJS 并没有内置点光源、聚光灯,需要自己写着色过程(请参考 Primitive API 或 CustomShader API)。

2. 光如何转换成 Uniform 以及何时被调用

既然 CesiumJS 支持的光只有一个,那么调查起来就简单了。先给结论:

光是作为 Uniform 值传递到着色器中的。 先查清楚光是如何从 Scene.light 转至 Renderer 中的 uniform 的。

2.1. 统一值状态对象(UniformState)

在 Scene 渲染一帧的过程中,几乎就在最顶部,Scene.js 模块内的函数 render 就每帧更新着 Context 对象的 uniformState 属性:

function render(scene) {
  const frameState = scene._frameState;

  const context = scene.context;
  const us = context.uniformState;

  // ...

  us.update(frameState);

  // ...
}

这个 uniformState 对象就是 CesiumJS 绝大多数统一值(Uniform)的封装集合,它的更新方法就会更新来自帧状态对象(FrameState)的光参数:

UniformState.prototype.update = function (frameState) {
  // ...
  const light = defaultValue(frameState.light, defaultLight);
  if (light instanceof SunLight) { /**/ }
  else { /**/ }

  const lightColor = light.color;
  // 计算 HDR 光到 this._lightColor 上

  // ...
}

那么,这个挂在 Context 上的 uniformState 对象包含的光状态信息,是什么时候被使用的呢?下一小节 2.2 就会介绍。

2.2. 上下文(Context)执行 DrawCommand

在 Scene 的更新过程中,最后 DrawCommand 对象被 Context 对象执行:

function continueDraw(context, drawCommand, shaderProgram, uniformMap) {
  // ...
  shaderProgram._setUniforms(
    uniformMap,
    context._us,
    context.validateShaderProgram
  )
  // ...
}

Context.prototype.draw = function (/* ... */) {
  // ...
  shaderProgram = defaultValue(shaderProgram, drawCommand._shaderProgram);
  uniformMap = defaultValue(uniformMap, drawCommand._uniformMap);

  beginDraw(this, framebuffer, passState, shaderProgram, renderState);
  continueDraw(this, drawCommand, shaderProgram, uniformMap);
}

就在 continueDraw 函数中,调用了 ShaderProgram 对象的 _setUniforms 方法,所有 Uniform 值在此将传入 WebGL 状态机中。

ShaderProgram.prototype._setUniforms = function (/**/) {
  // ...
  const uniforms = this._uniforms;
  len = uniforms.length;
  for (i = 0; i < len; ++i) {
    uniforms[i].set();
  }
  // ...
}

而这每一个 uniforms[i],都是一个没有公开在 API 文档中的私有类,也就是接下来 2.3 小节中要介绍的 WebGL Uniform 值封装对象。

2.3. 对 WebGL Uniform 值的封装

进入 createUniforms.js 模块:

// createUniforms.js

UniformFloat.prototype.set = function () { /* ... */ }
UniformFloatVec2.prototype.set = function () { /* ... */ }
UniformFloatVec3.prototype.set = function () { /* ... */ }
UniformFloatVec4.prototype.set = function () { /* ... */ }
UniformSampler.prototype.set = function () { /* ... */ }
UniformInt.prototype.set = function () { /* ... */ }
UniformIntVec2.prototype.set = function () { /* ... */ }
UniformIntVec3.prototype.set = function () { /* ... */ }
UniformIntVec4.prototype.set = function () { /* ... */ }
UniformMat2.prototype.set = function () { /* ... */ }
UniformMat3.prototype.set = function () { /* ... */ }
UniformMat4.prototype.set = function () { /* ... */ }

可以说把 WebGL uniform 的类型都封装了一个私有类。

以表示光方向的 UniformFloatVec3 类为例,看看它的 WebGL 调用:

function UniformFloatVec3(gl, activeUniform, uniformName, location) {
  this.name = uniformName

  this.value = undefined
  this._value = undefined

  this._gl = gl
  this._location = location
}

UniformFloatVec3.prototype.set = function () {
  const v = this.value

  if (defined(v.red)) {
    if (!Color.equals(v, this._value)) {
      this._value = Color.clone(v, this._value)
      this._gl.uniform3f(this._location, v.red, v.green, v.blue)
    }
  } else if (defined(v.x)) {
    if (!Cartesian3.equals(v, this._value)) {
      this._value = Cartesian3.clone(v, this._value)
      this._gl.uniform3f(this._location, v.x, v.y, v.z)
    }
  } else {
    throw new DeveloperError(`Invalid vec3 value for uniform "${this.name}".`);
  }
}

2.4. 自动统一值(AutomaticUniforms)

在 2.2 小节中有一个细节没有详细说明,即 ShaderProgram_setUniforms 方法中为什么可以直接调用每一个 uniforms[i]set()

回顾一下:

  • Scene.jsrender 函数内,光的信息被 us.update(frameState) 更新至 UniformState 对象中;

  • ShaderProgram_setUniforms 方法,调用 uniforms[i].set() 方法, 更新每一个私有 Uniform 对象上的值到 WebGL 状态机中

是不是缺少了点什么?

是的,UniformState 的值是如何赋予给 uniforms[i] 的?

这就不得不提及 ShaderProgram.js 模块中为当前着色器对象的 Uniform 分类过程了,查找模块中的 reinitialize 函数:

function reinitialize(shader) {
  // ...
  const uniforms = findUniforms(gl, program)
  const partitionedUniforms = partitionUniforms(
    shader,
    uniforms.uniformsByName
  )

  // ...
  shader._uniformsByName = uniforms.uniformsByName
  shader._uniforms = uniforms.uniform
  shader._automaticUniforms = partitionedUniforms.automaticUniforms
  shader._manualUniforms = partitionedUniforms.manualUniforms
  // ...
}

它把着色器对象上的 Uniform 全部找了出来,并分类为:

  • _uniformsByName - 一个字典对象,键名是着色器中 uniform 的变量名,值是 Uniform 的封装对象,例如 UniformFloatVec3

  • _uniforms - 一个数组,每个元素都是 Uniform 的封装对象,例如 UniformFloatVec3 等,若同名,则与 _uniformsByName 中的值是同一个引用

  • _manualUniforms - 一个数组,每个元素都是 Uniform 的封装对象,例如 UniformFloatVec3 等,若同名,则与 _uniformsByName 中的值是同一个引用

  • _automaticUniforms - 一个数组,每个元素是一个 object 对象,表示要 CesiumJS 自动更新的 Uniform 的映射关联关系

举例,_automaticUniforms[i] 用 TypeScript 来描述,是这么一个对象:

type AutomaticUniformElement = {
  automaticUniform: AutomaticUniform
  uniform: UniformFloatVec3
}

而这个 _automaticUniforms 就拥有自动更新 CesiumJS 内部状态的 Uniform 值的功能,例如我们所需的光状态信息。

来看 AutomaticUniforms.js 模块的默认导出对象:

// AutomaticUniforms.js

const AutomaticUniforms = {
  // ...
  czm_sunDirectionEC: new AutomaticUniform({ /**/ }),
  czm_sunDirectionWC: new AutomaticUniform({ /**/ }),
  czm_lightDirectionEC: new AutomaticUniform({ /**/ }),
  czm_lightDirectionWC: new AutomaticUniform({ /**/ }),
  czm_lightColor: new AutomaticUniform({
    size: 1,
    datatype: WebGLConstants.FLOAT_VEC3,
    getValue: function (uniformState) {
      return uniformState.lightColor;
    },
  }),
  czm_lightColorHdr:  new AutomaticUniform({ /**/ }),
  // ...
}
export default AutomaticUniforms

所以,在 ShaderProgram.prototype._setUniforms 执行的时候,其实是对自动统一值有一个赋值的过程,然后才到各个 uniforms[i]set() 过程:

ShaderProgram.prototype._setUniforms = function (
  uniformMap,
  uniformState,
  validate
) {
  let len;
  let i;

  // ...

  const automaticUniforms = this._automaticUniforms;
  len = automaticUniforms.length;
  for (i = 0; i < len; ++i) {
    const au = automaticUniforms[i];
    au.uniform.value = au.automaticUniform.getValue(uniformState);
  }

  // 译者注:au.uniform 实际上也在 this._uniforms 中
  // 是同一个引用在不同的位置,所以上面调用 au.automaticUniform.getValue 
  // 之后,下面 uniforms[i].set() 就会使用的是 “自动更新” 的 uniform 值

  const uniforms = this._uniforms;
  len = uniforms.length;
  for (i = 0; i < len; ++i) {
    uniforms[i].set();
  }

  // ...
}

也许这个过程有些乱七八糟,那就再简单梳理一次:

  • Scene 的 render 过程中,更新了 uniformState

  • Context 执行 DrawCommand 过程中,ShaderProgram 的 _setUniforms 执行所有 uniforms 的 WebGL 设置,这其中就会对 CesiumJS 内部不需要手动更新的 Uniform 状态信息进行自动刷新

  • 而在 ShaderProgram 绑定前,早就会把这个着色器中的 uniform 进行分组,一组是常规的 uniform 值,另一组则是需要根据 AutomaticUniform(自动统一值)更新的 uniform 值

说到底,光状态信息也不过是一种 Uniform,在最原始的 WebGL 学习教材中也是如此,只不过 CesiumJS 是一个更复杂的状态机器,需要更多逻辑划分就是了。

3. 在着色器中如何使用

上面介绍完光的类型、在 CesiumJS 源码中如何转化成 Uniform 并刷入 WebGL,那么这一节就简单看看光的状态 Uniform 在着色器代码中都有哪些使用之处。

3.1. 点云

PointCloud.js 使用了 czm_lightColor

找到 createShaders 函数下面这个分支:

// Version 1.104

function createShaders(pointCloud, frameState, style) {
  // ...
  if (usesNormals && normalShading) {
    vs +=
      "    float diffuseStrength = czm_getLambertDiffuse(czm_lightDirectionEC, normalEC); \n" +
      "    diffuseStrength = max(diffuseStrength, 0.4); \n" + // Apply some ambient lighting
      "    color.xyz *= diffuseStrength * czm_lightColor; \n";
  }
  // ...
}

显然,这段代码在拼凑顶点着色器代码,在 1.104 版本官方并没有改变这种拼接着色器代码的模式。

着色代码的含义也很简单,将漫反射强度值乘上 czm_lightColor,把结果交给 color 的 xyz 分量。漫反射强度在这里限制了最大值 0.4。

漫反射强度来自内置 GLSL 函数 czm_getLambertDiffuse(参考 packages/engine/Source/Shaders/Builtin/Functions/getLambertDiffuse.glsl

3.2. 冯氏着色法

Primitive API 材质对象的默认着色方法是 冯氏着色法(Phong),这个在 LearnOpenGL 网站上有详细介绍。

调用链:

MaterialAppearance.js
  ┗ TexturedMaterialAppearanceFS.js ← TexturedMaterialAppearanceFS.glsl
    ┗ phong.glsl → vec4 czm_phong()

除了 TexturedMaterialAppearanceFS 外,MaterialAppearance.js 还用了 BasicMaterialAppearanceFSAllMaterialAppearanceFS 两个片元着色器,这俩也用到了 czm_phong 函数。

看看 czm_phong 函数本体:

// phong.glsl

vec4 czm_phong(vec3 toEye, czm_material material, vec3 lightDirectionEC)
{
    // Diffuse from directional light sources at eye (for top-down)
    float diffuse = czm_private_getLambertDiffuseOfMaterial(vec3(0.0, 0.0, 1.0), material);
    if (czm_sceneMode == czm_sceneMode3D) {
        // (and horizon views in 3D)
        diffuse += czm_private_getLambertDiffuseOfMaterial(vec3(0.0, 1.0, 0.0), material);
    }

    float specular = czm_private_getSpecularOfMaterial(lightDirectionEC, toEye, material);

    // Temporary workaround for adding ambient.
    vec3 materialDiffuse = material.diffuse * 0.5;

    vec3 ambient = materialDiffuse;
    vec3 color = ambient + material.emission;
    color += materialDiffuse * diffuse * czm_lightColor;
    color += material.specular * specular * czm_lightColor;

    return vec4(color, material.alpha);
}

函数内前面的计算步骤是获取漫反射、高光值,走的是辅助函数,在这个文件内也能看到。

最后灯光 czm_lightColor 和材质的漫反射、兰伯特漫反射、材质辉光等因子一起相乘累加,得到最终的颜色值。

除了 phong.glsl 外,参与半透明计算的 czm_translucentPhong 函数(在 translucentPhong.glsl 文件中)在 OIT.js 模块中用于替换 czm_phong 函数。

3.3. 地球

Globe.js 中使用的 GlobeFS 片元着色器代码中使用到了 czm_lightColor,主要是 main 函数中:

void main() {
// ...

#ifdef ENABLE_VERTEX_LIGHTING
    float diffuseIntensity = clamp(czm_getLambertDiffuse(czm_lightDirectionEC, normalize(v_normalEC)) * u_lambertDiffuseMultiplier + u_vertexShadowDarkness, 0.0, 1.0);
    vec4 finalColor = vec4(color.rgb * czm_lightColor * diffuseIntensity, color.a);
#elif defined(ENABLE_DAYNIGHT_SHADING)
    float diffuseIntensity = clamp(czm_getLambertDiffuse(czm_lightDirectionEC, normalEC) * 5.0 + 0.3, 0.0, 1.0);
    diffuseIntensity = mix(1.0, diffuseIntensity, fade);
    vec4 finalColor = vec4(color.rgb * czm_lightColor * diffuseIntensity, color.a);
#else
    vec4 finalColor = color;
#endif

// ...
}

同样是先获取兰伯特漫反射值(使用 clamp 函数钉死在 [0, 1] 区间内),然后将颜色、czm_lightColor、漫反射值和透明度一起计算出 finalColor,把最终颜色值交给下一步计算。

这里区分了两个宏分支,受 TerrainProvider 影响,有兴趣可以追一下 GlobeSurfaceTileProvider.js 模块中 addDrawCommandsForTile 函数中 hasVertexNormals 参数的获取。

3.4. 模型架构中的光着色阶段

在 1.97 大改的 Model API 中,PBR 着色法使用了 czm_lightColorHdr 变量。czm_lightColorHdr 也是自动统一值(AutomaticUniforms)的一个。

在 Model 的更新过程中,有一个 buildDrawCommands 的步骤,其中有一个函数 ModelRuntimePrimitive.prototype.configurePipeline 会增减 ModelRuntimePrimitive 上的着色阶段:

ModelRuntimePrimitive.prototype.configurePipeline = function (frameState) {
  // ...
  pipelineStages.push(LightingPipelineStage);
  // ...
}

上面是其中一个阶段 —— LightingPipelineStage,最后在 ModelSceneGraph.prototype.buildDrawCommands 方法内会调用每一个 stage 的 process 方法,调用 shaderBuilder 构建出着色器对象所需的材料,进而构建出着色器对象。过程比较复杂,直接看其中 LightingPipelineStage.glsl 提供的阶段函数:

void lightingStage(inout czm_modelMaterial material, ProcessedAttributes attributes)
{
    // Even though the lighting will only set the diffuse color,
    // pass all other properties so further stages have access to them.
    vec3 color = vec3(0.0);

    #ifdef LIGHTING_PBR
    color = computePbrLighting(material, attributes);
    #else // unlit
    color = material.diffuse;
    #endif

    #ifdef HAS_POINT_CLOUD_COLOR_STYLE
    // The colors resulting from point cloud styles are adjusted differently.
    color = czm_gammaCorrect(color);
    #elif !defined(HDR)
    // If HDR is not enabled, the frame buffer stores sRGB colors rather than
    // linear colors so the linear value must be converted.
    color = czm_linearToSrgb(color);
    #endif

    material.diffuse = color;
}

进入 computePbrLighting 函数(同一个文件内):

#ifdef LIGHTING_PBR
vec3 computePbrLighting(czm_modelMaterial inputMaterial, ProcessedAttributes attributes)
{
    // ...

    #ifdef USE_CUSTOM_LIGHT_COLOR
    vec3 lightColorHdr = model_lightColorHdr;
    #else
    vec3 lightColorHdr = czm_lightColorHdr;
    #endif

    vec3 color = inputMaterial.diffuse;
    #ifdef HAS_NORMALS
    color = czm_pbrLighting(
        attributes.positionEC,
        inputMaterial.normalEC,
        czm_lightDirectionEC,
        lightColorHdr,
        pbrParameters
    );

        #ifdef USE_IBL_LIGHTING
        color += imageBasedLightingStage(
            attributes.positionEC,
            inputMaterial.normalEC,
            czm_lightDirectionEC,
            lightColorHdr,
            pbrParameters
        );
        #endif
    #endif

   // ...
}
#endif

故,存在 USE_CUSTOM_LIGHT_COLOR 宏时才会使用 czm_lightColorHdr 变量作为灯光颜色,参与函数 czm_pbrLighting 计算出颜色值。

3.5. 后记

除了光颜色本身,我在着色器代码中看到被应用的还有光线的方向,主要是 czm_lightDirectionEC 等变量,光照材质仍需一个漫长的学习过程。文章来源地址https://www.toymoban.com/news/detail-415733.html

到了这里,关于CesiumJS 源码杂谈 - 从光到 Uniform的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【6】uniform颜色写入

    之前的Basic.shader: 这里 color = vec4(1.0, 0.0, 0.0, 1.0); 是写死的,但我们想要从代码里进行更改,因此将片元着色器部分修改为这样: 在主程序里就可以写入颜色( GLCall 属于错误检测宏,去掉不影响使用): 如果在 while (!glfwWindowShouldClose(window)) 里每次都设置其unifrom的话,就可以

    2024年02月10日
    浏览(32)
  • GIS融合之路(三)CesiumJS和ThreeJS相机同步

    同样在这篇文章开始前重申一下,山海鲸并没有使用ThreeJS引擎。但由于ThreeJS引擎使用广泛,下文中直接用ThreeJS同CesiumJS的整合方案代替山海鲸中3D引擎和CesiumJS整合。 系列传送门: 山海鲸可视化:GIS融合之路(一)技术选型CesiumJS/loaders.gl/iTowns? 山海鲸可视化:GIS融合之路(

    2024年02月08日
    浏览(38)
  • 【CesiumJS入门】(4)加载3D Tiles并获取tileset

    本次,我们将写一个函数来加载3D Tiles数据, 3D Tiles数据的文档:CesiumGS/3d-tiles: Specification for streaming massive heterogeneous 3D geospatial datasets (github.com) 同时我们将获取加载成功后的 tileset 数据集(有了tileset后续就可以方便得进行模型相关的操作了),下图为加载模型后的效果。

    2024年02月16日
    浏览(37)
  • 【CesiumJS-3】加载倾斜模型数据(3DTilest)以及修改位置

    引入倾斜模型数据 await Cesium.Cesium3DTileset.fromUrl(\\\"/api/3DTiles/b3dm_qx/tileset.json\\\") 倾斜模型的数据通过nginx代理本地文件夹以接口的形式获取;如果倾斜模型数据较小可直接放到项目文件Public目录下,以绝对路径的形式引入即可; nginx代理本地文件夹相关操作链接 效果展示 调整倾斜

    2024年04月14日
    浏览(25)
  • [机器学习] 5. 一致收敛性 Uniform Convergency

    回顾不可知 PAC 的定义 定义 一个假设类 (mathcal H) 是 不可知 PAC 可学习的,如果存在函数 (m_{mathcal H} : (0, 1)^2 to mathbb N) 和一个学习算法满足,对任意 (epsilon, delta in (0, 1)) 、 (mathcal X times {0, 1}) 上的分布 (mathcal D) ,学习算法接收长度为 (m geq m_{mathcal H}(epsil

    2024年02月06日
    浏览(35)
  • Kratos框架源码解读-目录

    日志

    2024年02月11日
    浏览(35)
  • Kratos源码-日志-目录

    提示:以下是本篇文章正文内容,下面案例可供参考 Kratos源码-Java中的日志框架 Kratos源码-Logging

    2024年02月11日
    浏览(33)
  • Flowable 源码目录结构

    下载地址:flowable/flowable-engine at flowable-6.7.2 (github.com) Git 下载方式: git clone git@github.com:flowable/flowable-engine.git 切换分支 git checkout -b origin/6.7.2 切换到 6.7.2 这个版本

    2024年02月12日
    浏览(41)
  • OpenWrt源码目录

      分析的OpenWrt源码目录有助于分析OpenWrt的源码 1.1、scripts   构建期间用到的各类脚本文件。它存放了一些脚本,使用了bash,python,perl等多种脚本语言.编译过程中,用于第三方软件包管理的feeds文件也是在这个目录当中.在编译过程中,使用到的脚本也统一放在这个目录中.   

    2024年02月11日
    浏览(31)
  • MySQL目录结构与源码

    本博主将用CSDN记录软件开发求学之路上亲身所得与所学的心得与知识,有兴趣的小伙伴可以关注博主!也许一个人独行,可以走的很快,但是一群人结伴而行,才能走的更远! MySQL的目录结构 说明 bin目录 所有MySQL的可执行文件。如:mysql.exe MySQLInstanceConfig.exe 数据库的配置向

    2024年02月08日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包