迁移学习(CLDA)《CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation》

这篇具有很好参考价值的文章主要介绍了迁移学习(CLDA)《CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation》。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Note:[ wechat:Y466551 | 可加勿骚扰,付费咨询 ]

论文信息

论文标题:CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation
论文作者:Ankit Singh
论文来源:NeurIPS 2021
论文地址:download 
论文代码:download
视屏讲解:click

1 简介

  动机:半监督导致来自标记源和目标样本的监督只能确保部分跨域特征对齐,导致目标域的对齐和未对齐子分布形成域内差异;

  贡献

    • 提出基于质心的对比学习框架;  
    • 提出基于类级的实例对比学习框架;  

2 方法

2.1 整体框架

  迁移学习(CLDA)《CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation》

2.2 源域监督训练

  源域、目标域监督损失:

    $\mathcal{L}_{\text {sup }}=-\sum_{k=1}^{K}\left(y^{i}\right)_{k} \log \left(\mathcal { F } \left(\mathcal{G}\left(\left(x_{l}^{i}\right)\right)_{k}\right.\right.$

2.3 域间对比对齐

  基于 $\text{mini-batch}$ 的源域质心(类级):

    $C_{k}^{s}=\frac{\sum_{i=1}^{i=B} \mathbb{1}_{\left\{y_{i}^{s}=k\right\}} \mathcal{F}\left(\mathcal{G}\left(x_{i}^{s}\right)\right)}{\sum_{i=1}^{i=B} \mathbb{1}_{\left\{y_{i}^{s}=k\right\}}}$

  动量更新源域质心:

    $C_{k}^{s}=\rho\left(C_{k}^{s}\right)_{s t e p}+(1-\rho)\left(C_{k}^{s}\right)_{s t e p-1}$

  无标签目标域样本的伪标签:

    $\hat{y_{i}^{t}}=\operatorname{argmax}\left(\left(\mathcal{F}\left(\mathcal{G}\left(x_{i}^{t}\right)\right)\right)\right.$

  域间对比对齐(类级):

    $\mathcal{L}_{c l u}\left(C_{i}^{t}, C_{i}^{s}\right)=-\log \frac{h\left(C_{i}^{t}, C_{i}^{s}\right)}{h\left(C_{i}^{t}, C_{i}^{s}\right)+\sum_{\substack{r=1 \\ q \in\{s, t\}}}^{K} \mathbb{1}_{\{r \neq i\}} h\left(C_{i}^{t}, C_{r}^{q}\right)}$

  其中:

    $h(\mathbf{u}, \mathbf{v})=\exp \left(\frac{\mathbf{u}^{\top} \mathbf{v}}{\|\mathbf{u}\|_{2}\|\mathbf{v}\|_{2}} / \tau\right)$

2.4 实例对比对齐

  目的:使用实例对比学习在目标域中形成稳定和正确的集群质心,在实例对比对齐中,对输入和强增强的未标记图像的一致预测迫使未对齐的目标子分布从低密度区域向对齐的分布移动,确保了在未标记的目标分布中更好的聚类,在使用实例对比对齐和域间对比对齐后,通过如 Table 5 验证了这一点。

  强数据增强:

    $\tilde{x}_{i}^{t}=\psi\left(x_{i}^{t}\right)$

  实例对比损失:

    $\mathcal{L}_{i n s}\left(\tilde{x}_{i}^{t}, x_{i}^{t}\right)=-\log \frac{h\left(\mathcal{F}\left(\mathcal{G}\left(\tilde{x}_{i}^{t}\right), \mathcal{F}\left(\mathcal{G}\left(x_{i}^{t}\right)\right)\right)\right.}{\sum_{r=1}^{B} h\left(\mathcal{F}\left(\mathcal{G}\left(\tilde{x}_{i}^{t}\right)\right), \mathcal{F}\left(\mathcal{G}\left(x_{r}^{t}\right)\right)\right)+\sum_{r=1}^{B} \mathbb{1}_{\{r \neq i\}} h\left(\mathcal{F}\left(\mathcal{G}\left(\tilde{x}_{i}^{t}\right)\right), \mathcal{F}\left(\mathcal{G}\left(\tilde{x}_{r}^{t}\right)\right)\right)}$

2.5 训练目标

    $\mathcal{L}_{\text {tot }}=\mathcal{L}_{\text {sup }}+\alpha * \mathcal{L}_{\text {clu }}+\beta * \mathcal{L}_{\text {ins }}$

3 总结

  略文章来源地址https://www.toymoban.com/news/detail-415799.html

到了这里,关于迁移学习(CLDA)《CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation》的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文解读( FGSM)《Adversarial training methods for semi-supervised text classification》

    论文标题:Adversarial training methods for semi-supervised text classification 论文作者:Taekyung Kim 论文来源:ICLR 2017 论文地址:download  论文代码:download 视屏讲解:click 通过对输入进行小扰动创建的实例,可显著增加机器学习模型所引起的损失 对抗性实例的存在暴露了机器学习模型的

    2023年04月12日
    浏览(48)
  • 【论文阅读】Equivariant Contrastive Learning for Sequential Recommendation

    2023-RecSys https://github.com/Tokkiu/ECL 对比学习(CL)有利于对具有信息性自我监督信号的顺序推荐模型的训练。 现有的解决方案应用一般的顺序数据增强策略来生成正对,并鼓励它们的表示是不变的。 然而,由于用户行为序列的固有属性,一些增强策略,如项目替代,可能会导致

    2024年01月18日
    浏览(44)
  • Multimodal Contrastive Training for Visual Representation Learning

    parameterize the image encoder as f i q _{iq} i q ​ query feature q i i _{ii} ii ​ ,key feature k i i _{ii} ii ​ parameterize the textual encoder as f c q ( ⋅ ; Θ q , Φ c q ) f_{cq}(·; Θ_q, Φ_{cq}) f c q ​ ( ⋅; Θ q ​ , Φ c q ​ ) ,momentum textual encoder as f c k ( ⋅ ; Θ k , Φ i k ) f_{ck}(·; Θ_k, Φ_{ik}) f c k ​ ( ⋅; Θ

    2024年02月01日
    浏览(41)
  • 论文阅读:Heterogeneous Graph Contrastive Learning for Recommendation(WSDM ’23)

    论文链接 在推荐系统中,图神经网络在建模图结构数据上已经变成一个强有力的工具。但是现实生活的推荐语义通常涉及异质关系(像用户的社交关系,物品知识关系的依赖),这些都包含丰富的语义信息去提升表征能力的学习。同时,对比自监督学习在推荐系统中也取得了

    2024年02月08日
    浏览(47)
  • 《Contrastive Learning for Unpaired Image-to-Image Translation》

    原文及代码链接 https://github.com/taesungp/contrastive-unpaired-translation 图像转换任务中,输入-输出对应patch内容应该保持一致; 使用基于patch的 对比学习 方法实现 单向图像转换 ; 训练 数据不成对 ; 该方法促使输入-输出中对应patch映射到特征空间中的一个相似点,输入图像中其他

    2024年02月08日
    浏览(40)
  • 【GAN小白入门】Semi-Supervised GAN 理论与实战

    🍨 本文为🔗365天深度学习训练营 中的学习记录博客 🍖 原作者:K同学啊 🚀 文章来源:K同学的学习圈子 论文原文:Semi-Supervised Learning with Generative Adversarial Networks.pdf 在学习GAN的时候你有没有想过这样一个问题呢,如果我们生成的图像是带有标签的,例如数字0-9,那为什么

    2024年02月09日
    浏览(38)
  • 【论文笔记】SDCL: Self-Distillation Contrastive Learning for Chinese Spell Checking

    论文地址:https://arxiv.org/pdf/2210.17168.pdf 论文提出了一种token-level的自蒸馏对比学习(self-distillation contrastive learning)方法。 传统方法使用BERT后,会对confusion chars进行聚类,但使用作者提出的方法,会让其变得分布更均匀。 confusion chars: 指的应该是易出错的字。 作者提取特征的方

    2024年02月02日
    浏览(58)
  • 【自监督学习】对比学习(Contrastive Learning)介绍

    1.1. 为什么要进行自监督学习        我们知道,标注数据总是有限的,就算ImageNet已经很大,但是很难更大,那么它的天花板就摆在那,就是有限的数据总量。NLP领域目前的经验应该是:自监督预训练使用的数据量越大,模型越复杂,那么模型能够吸收的知识越多,对下游

    2024年02月07日
    浏览(56)
  • 一文弄懂什么是对比学习(Contrastive Learning)

    本文是自己学习对比学习的总结,如有问题,欢迎批评指正。 有的paper将对比学习称为自监督学习(Self-supervised learning),有的将其称为无监督学习(Unsupervised Learning , UL)。 自监督学习是无监督学习的一种形式。 自监督学习(Self-supervised learning)可以避免对数据集进行大量的

    2024年02月04日
    浏览(37)
  • DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读

    原文链接: https://ojs.aaai.org/index.php/AAAI/article/view/25114/24886 该论文设计了一种 新的零样本学习范式,通过迁移语言模型中的先验语义知识,与视觉模型的特征感知能力进行对齐,以增强后者对于未见过图像的识别能力。 零样本学习(ZSL)旨在预测在训练期间从未出现样本的未

    2024年01月17日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包