Python图像锐化及边缘检测(Roberts、Prewitt、Sobel、Lapllacian、Canny、LOG)

这篇具有很好参考价值的文章主要介绍了Python图像锐化及边缘检测(Roberts、Prewitt、Sobel、Lapllacian、Canny、LOG)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

图像锐化概述

算法方法介绍

 代码实现

效果展示


图像锐化概述

图像锐化(image sharpening)是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,分为空间域处理和频域处理两类。图像锐化是为了突出图像上地物的边缘、轮廓,或某些线性目标要素的特征。这种滤波方法提高了地物边缘与周围像元之间的反差,因此也被称为边缘增强。

算法方法介绍

Python图像锐化及边缘检测(Roberts、Prewitt、Sobel、Lapllacian、Canny、LOG)

Roberts算子,又称罗伯茨算子,是一种最简单的算子,是一种利用局部差分算子寻找边缘的算子。他采用对角线方向相邻两像素之差近似梯度幅值检测边缘。检测垂直边缘的效果好于斜向边缘,定位精度高,对噪声敏感,无法抑制噪声的影响。

Python图像锐化及边缘检测(Roberts、Prewitt、Sobel、Lapllacian、Canny、LOG)

Prewitt算子是一种一阶微分算子的边缘检测,利用像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘,去掉部分伪边缘,对噪声具有平滑作用 。其原理是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个检测水平边缘,一个检测垂直边缘。

Python图像锐化及边缘检测(Roberts、Prewitt、Sobel、Lapllacian、Canny、LOG)

索贝尔算子是把图像中每个像素的上下左右四领域的灰度值加权差,在边缘处达到极值从而检测边缘。索贝尔算子主要用作边缘检测。索贝尔算子不但产生较好的检测效果,而且对噪声具有平滑抑制作用,但是得到的边缘较粗,且可能出现伪边缘。

在边缘检测中,常用的一种模板是Sobel 算子。Sobel 算子有两个,一个是检测水平边缘的 ;另一个是检测垂直边缘的 。与Prewitt算子相比,Sobel算子对于象素的位置的影响做了加权,可以降低边缘模糊程度,因此效果更好。

Python图像锐化及边缘检测(Roberts、Prewitt、Sobel、Lapllacian、Canny、LOG)

Laplacian(拉普拉斯)算子是一种二阶导数算子,其具有旋转不变性,可以满足不同方向的图像边缘锐化(边缘检测)的要求。通常情况下,其算子的系数之和需要为零。

Python图像锐化及边缘检测(Roberts、Prewitt、Sobel、Lapllacian、Canny、LOG)

Scharr算子是对Sobel算子差异性的增强,因此两者之间的在检测图像边缘的原理和使用方式上相同。Scharr算子的边缘检测滤波的尺寸为3×3,因此也有称其为Scharr滤波器。可以通过将滤波器中的权重系数放大来增大像素值间的差异,弥补Sobel算子对图像中较弱的边缘提取效果较差的缺点。

Python图像锐化及边缘检测(Roberts、Prewitt、Sobel、Lapllacian、Canny、LOG)

Python图像锐化及边缘检测(Roberts、Prewitt、Sobel、Lapllacian、Canny、LOG)

Canny边缘检测是一种非常流行的边缘检测算法,是John Canny在1986年提出的。它是一个多阶段的算法,即由多个步骤构成。

  1. 应用高斯滤波来平滑图像,目的是去除噪声
  2. 找寻图像的强度梯度(intensity gradients)
  3. 应用非最大抑制(non-maximum suppression)技术来消除边误检(本来不是但检测出来是)
  4. 应用双阈值的方法来决定可能的(潜在的)边界
  5. 利用滞后技术来跟踪边界

最优边缘检测的特征:

  • 低错误率: 标识出尽可能多的实际边缘,同时尽可能的减少噪声产生的误报
  • 高定位性: 标识出的边缘要与图像中的实际边缘尽可能接近
  • 最小响应: 图像中的边缘只能标识一次

 设置两个阈值,其中一个为高阈值 maxVal,另一个为低阈值 minVal。根据当前边缘像素的梯度值(指的是梯度幅度,下同)与这两个阈值之间的关系,判断边缘的属性。具体步骤为:
(1)如果当前边缘像素的梯度值大于或等于 maxVal,则将当前边缘像素标记为强边缘。
(2)如果当前边缘像素的梯度值介于 maxVal 与 minVal 之间,则将当前边缘像素标记为虚
边缘(需要保留)。
(3)如果当前边缘像素的梯度值小于或等于 minVal,则抑制当前边缘像素。
当函数 cv2.Canny()的参数 threshold1 和 threshold2 的值较小时,能够捕获更多的边缘信息

 Python图像锐化及边缘检测(Roberts、Prewitt、Sobel、Lapllacian、Canny、LOG)

 Laplace算子对通过图像进行操作实现边缘检测的时,对离散点和噪声比较敏感。于是,首先对图像进行高斯卷积滤波进行降噪处理,再采用Laplace算子进行边缘检测,就可以提高算子对噪声和离散点的Robust, 这一个过程中Laplacian of Gaussian(LOG)算子就诞生了。
 

 代码实现

#encoding:utf-8
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取图像
img = cv2.imread('1.bmp',cv2.IMREAD_GRAYSCALE)
lenna_img = img #cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

#灰度化处理图像
grayImage = img #cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#高斯滤波
gaussianBlur = cv2.GaussianBlur(grayImage, (3,3), 0)

#阈值处理
#ret, binary = cv2.threshold(gaussianBlur, 150, 255, cv2.THRESH_BINARY)
#自适应阈值处理
binary = cv2.adaptiveThreshold(src=gaussianBlur,maxValue=255,adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C,thresholdType=cv2.THRESH_BINARY,blockSize=11,C=1)  


#Roberts算子
kernelx = np.array([[-1,0],[0,1]], dtype=int)
kernely = np.array([[0,-1],[1,0]], dtype=int)
x = cv2.filter2D(binary, cv2.CV_16S, kernelx)
y = cv2.filter2D(binary, cv2.CV_16S, kernely)
absX = cv2.convertScaleAbs(x)     
absY = cv2.convertScaleAbs(y)    
Roberts = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

#Prewitt算子
kernelx = np.array([[1,1,1],[0,0,0],[-1,-1,-1]], dtype=int)
kernely = np.array([[-1,0,1],[-1,0,1],[-1,0,1]], dtype=int)
x = cv2.filter2D(binary, cv2.CV_16S, kernelx)
y = cv2.filter2D(binary, cv2.CV_16S, kernely)
absX = cv2.convertScaleAbs(x)  
absY = cv2.convertScaleAbs(y)    
Prewitt = cv2.addWeighted(absX,0.5,absY,0.5,0)

#Sobel算子
x = cv2.Sobel(binary, cv2.CV_16S, 1, 0)
y = cv2.Sobel(binary, cv2.CV_16S, 0, 1)    
absX = cv2.convertScaleAbs(x)   
absY = cv2.convertScaleAbs(y)    
Sobel = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

#拉普拉斯算法
dst = cv2.Laplacian(binary, cv2.CV_16S, ksize = 3)
Laplacian = cv2.convertScaleAbs(dst)

# Scharr算子
x = cv2.Scharr(gaussianBlur, cv2.CV_32F, 1, 0) #X方向
y = cv2.Scharr(gaussianBlur, cv2.CV_32F, 0, 1) #Y方向
absX = cv2.convertScaleAbs(x)       
absY = cv2.convertScaleAbs(y)
Scharr = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

#Canny算子
Canny = cv2.Canny(gaussianBlur, 20, 30)

#先通过高斯滤波降噪
gaussian = cv2.GaussianBlur(grayImage, (3,3), 0)
 
#再通过拉普拉斯算子做边缘检测
dst = cv2.Laplacian(gaussian, cv2.CV_16S, ksize = 3)
LOG = cv2.convertScaleAbs(dst)

#效果图
fig = plt.figure(figsize=(10, 10))#设置大小
titles = ['Source Image', 'Binary Image', 'Roberts Image',
          'Prewitt Image','Sobel Image', 'Laplacian Image',
          'Scharr Image', 'Canny Image', 'LOG Image']  
images = [lenna_img, binary, Roberts,
          Prewitt, Sobel, Laplacian,
          Scharr, Canny, LOG]  
for i in np.arange(9):  
   plt.subplot(3,3,i+1),plt.imshow(images[i],'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()  
fig.savefig('fig-sharp.jpg',bbox_inches='tight')

效果展示

Python图像锐化及边缘检测(Roberts、Prewitt、Sobel、Lapllacian、Canny、LOG)

 

CSDN话题挑战赛第2期
参赛话题:学习笔记文章来源地址https://www.toymoban.com/news/detail-415947.html

到了这里,关于Python图像锐化及边缘检测(Roberts、Prewitt、Sobel、Lapllacian、Canny、LOG)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python边缘检测之prewitt, sobel, laplace算子

    ndimage 中提供了卷积算法,并且建立在卷积之上,提供了三种边缘检测的滤波方案: prewitt , sobel 以及 laplace 。 在convolve中列举了一个用于边缘检测的滤波算子,统一维度后,其 x x x 和 y y y 向的梯度算子分别写为 [ − 1 0 1 − 1 0 1 − 1 0 1 ] , [ − 1 − 1 − 1 0 0 0 1 1 1 ] begin{bma

    2024年02月03日
    浏览(41)
  • Opencv图像边缘检测——Roberts算子(手写)、Sobel算子(手写和调包)、Scharr算子、Laplacian算子

    Roberts算子即交叉微分算子,是基于交叉差分的梯度算子。此算法通过局部差分来计算检测图像的边缘线条,对噪声敏感。 Roberts 交叉微分算子分别为主对角线和副对角线方向的算子,有两个2*2的滤波算子组成: 对于图像而言,如果im表示图像像素矩阵,则可以如下计算(i,

    2024年02月04日
    浏览(74)
  • 机器视觉技术与应用实战(平均、高斯、水平prewitt、垂直prewitt、水平Sobel、垂直Sobel、拉普拉斯算子、锐化、中值滤波)

         扯一点题外话,这一个月经历了太多,接连感染了甲流、乙流,人都快烧没了,乙流最为严重,烧了一个星期的38-39度,咳嗽咳到虚脱。还是需要保护好身体,感觉身体扛不住几次连续发烧!(甲流乙流是病毒,提前准备好奥司他韦,这个是阻断病毒复制的药,48小时内

    2024年01月21日
    浏览(57)
  • (数字图像处理MATLAB+Python)第七章图像锐化-第三节:高斯滤波与边缘检测

    高斯函数 :是一种常见的连续函数,通常用符号 G ( x ) G(x) G ( x ) 表示。它可以用下面的公式定义 G ( x ) = 1 σ 2 π e − x 2 2 σ 2 G(x)=frac{1}{sigma sqrt{ 2pi }}e^{-frac{x^{2}}{2sigma^{2}}} G ( x ) = σ 2 π ​ 1 ​ e − 2 σ 2 x 2 ​ 其中, x x x 是自变量, σ sigma σ 是一个正实数,表示高斯函

    2024年02月06日
    浏览(57)
  • 图像边缘检测--(Sobel、Laplacian、Canny)

    1、图像中各种形状的检测是计算机视觉领域中非常常见的技术之一,特别是图像中直线的检测,圆的检测,图像边缘的检测等,下面将介绍如何快速检测图像边缘。 2、边缘是不同区域的分界线,是周围(局部)像素有显著变化的像素的集合,有幅值与方向两个属性。这个不

    2024年02月07日
    浏览(51)
  • 8 图像去噪 滤波 锐化 边缘检测案例(matlab程序)

    1. 简述        学习目标:一个图像处理的经典综合案例 一、图像锐化的原理   图像锐化的目的是凸显物体的细节轮廓,通常可以用梯度、Laplace算子和高通滤波来实现,下面一一说明: 1、梯度法 梯度计算可以参考 小白学习图像处理——canny边缘检测算法 ,假设Gx为x方

    2024年02月12日
    浏览(41)
  • Python实现多种图像锐化方法:拉普拉斯算子和Sobel算子

    图像和视频逐渐成为人们生活中信息获取的重要来源,而图像和视频在传输过程中有很多因素可能造成图像模糊,比如不正确的聚焦会产生离焦模糊,景物和照相机的相对运动会造成运动模糊,图像压缩造成的高频成分丢失模糊。 模糊降低了图像的清晰度,严重影响了图像质

    2024年02月04日
    浏览(56)
  • ZYNQ图像处理(7)——sobel边缘检测

    所谓边缘是指其周围像素灰度急剧变化的那些象素的集合,它是图像最基本的特征。边缘存在于目标、背景和区域之间,所以,它是图像分割所依赖的最重要的依据。由于边缘是位置的标志,对灰度的变化不敏感,,因此,边缘也是图像匹配的重要的特征。边缘检测和区域划分

    2024年02月05日
    浏览(71)
  • 【边缘检测】基于matlab八方向sobel图像边缘检测【含Matlab源码 1865期】

    ✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。 🍎个人主页:海神之光 🏆代码获取方式: 海神之光Matlab王者学习之路—代码获取方式 ⛳️座右铭:行百里者,半于九十。 更多Matlab仿真内容点击👇 Matlab图像处理(进阶版) 路径规划

    2024年02月05日
    浏览(87)
  • Python从0到1丨详解图像锐化的Sobel、Laplacian算子

    本文分享自华为云社区《[Python从零到壹] 五十八.图像增强及运算篇之图像锐化Sobel、Laplacian算子实现边缘检测》,作者: eastmount 。 Sobel算子是一种用于边缘检测的离散微分算子,它结合了高斯平滑和微分求导。该算子用于计算图像明暗程度近似值,根据图像边缘旁边明暗程

    2024年02月09日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包