一张图搞懂微服务架构设计

这篇具有很好参考价值的文章主要介绍了一张图搞懂微服务架构设计。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

当前,微服务架构在很多公司都已经落地实施了,下面用一张图简要概述下微服务架构设计中常用组件。不能说已经使用微服务好几年了,结果对微服务架构没有一个整体的认知,一个只懂搬砖的程序员不是一个好码农!

一张图搞懂微服务架构设计

 流量入口Nginx

在上图中可以看到,Nginx作为整个架构的流量入口,可以理解为一个外部的网关,它承担着请求的路由转发、负载均衡、动静分离等功能。作为一个核心入口点,Nginx肯定要采用多节点部署,同时通过keepalived来实现高可用,从而保障整个平台的高可用。

网关

网关是在Nginx后的另外一个核心组件。它承担着请求鉴权,路由转发,协议转换,流量监控等一系列功能,上图中网关是采用spring Cloud Gateway来实现业务网关的功能,在网关选型中,我们还有其他的选择,比如Zuul1,Zuul2,Kong等等,这些方案都有自己的优势和局限性,我们可以根据自己他们的特点来抉择到底选用哪一个方案。对于网关的深入了解,可以参见之前的系列文章网关那点事,这里不做赘述。

上图中,Spring Cloud Gateway下面有jwt和OAuth2,其实这两个就是基于token的认证鉴权,一般互联网项目中,在登录模块都是支持微信或者qq登录,这就是用到OAuth2的授权登录。想深入了解Oauth2相关细节,可以参考之前的Oauth2.0客户端服务端示例等系列文章。

业务组件

从上面的架构图中可以看到,网关之后就是我们的业务组件了,可以理解就是拆分之后的微服务了,比如电商平台常见的账号服务、订单服务、发票服务、收银台服务等等。服务组件之间通过Feign来进行http调用,Feign集成Ribbon来实现客户端侧负载均衡。具体的服务领域划分,服务限界上下文的设定,这就另外的知识了,如果想做好服务划分,DDD领域驱动设计这块可以深入了解下。

服务注册中心

不管是基于Dubbo实现的SOA,还是基于Spring Cloud拆分的微服务架构,服务注册中心都是必须的,我们把所有的服务组件都注册到注册中心,进而实现服务的动态调用。常见能实现注册中心功能的有Zookeeper,Eureka,Nacos,Zookeeper在Dubbo中使用比较多,目前公司服务微服务架构是基于Eureka的,Eureka好像目前不维护了。一般新的平台建议直接集成Nacos,Nacos除了能做注册中心来使用,也可以作为分布式配置中心来使用,比Sping Cloud Config更好使。

缓存和分布式锁

在图中左下角,我们可以看到Redis组件,我们可以把Redis作为缓存来使用,把一些查询慢,使用率高的热点数据做缓存处理,能快速提高接口响应时间。同时redis在微服务中的一大使用场景就是分布式锁,传统的Sychronized和显示Lock锁显然是不能解决分布式并发问题。

为了保障Redis的高可用,可以采用哨兵部署,不是三个redis节点,一主二从,同时部署三个哨兵节点,来实现故障转移,避免单点问题,如果Redis存储的数据量很大,达到了单节点的Redis的性能瓶颈,我们也可以用Redis集群模式来实现分布式存储。Redis的哨兵详细信息可以参见之前的Redis Sentinel 架构原理详解(一)等系列文章。

数据持久层

不管单体服务,还是微服务,数据持久层都是必须的,我们是选用互联网项目经常使用的mysql作为DB,为了保证服务读写效率以及高可用性,我们主从分离模式,同时实现读写分离,来保障mysql的读写性能。

随着业务量增长,单表的数据量达到性能瓶颈之后,我们就要采用分库分表来对数据库表进行水平拆分和垂直拆分了,具体如何进行合理的拆分,以及技术选型,这些和项目现有的表结构设计是息息相关的,要考虑后续的可拓展性,不能短期拆了一时爽,后续业务量增暴涨之后,服务器的性能不足以维持数据库的性能时,这时候要拆分服务器部署了。当然,一般企业的数据量级达不到那样的量级。

结构型数据存储

mysql比较擅长存储关系型数据,项目中有需要存储结构性数据的场景,比如存储JSON字符串,这种场景通过mysql来存储显然事不合适的。一般我们会采用Elasticsearch或者MangoDB来进行存储,如果业务中需要检索功能,更建议使用Elasticsearch。Elasticsearch支持DSL,有比较丰富查询检索功能,甚至能实现GIS空间检索功能。

消息中间件

前面说到,微服务架构中,服务之间同步调用是通过Feign来实现的,那服务间的异步解耦就要通过MQ来实现了。虽然我们可以通过多线程来实现异步调用,但是这种异步调用不支持持久化,可能会造成消息丢失,所以一般都集成RabbitMq或者RocketMq。

日志收集

在微服务架构中,通过一个组件,比如说订单服务都是多节点分布式部署,每个节点的log日志都是存储在节点本地,如果要查询日志,我们难道要登录到各个节点找到对应的日志信息?这种查看日志肯定是不行的。所以一般会引入ELK来做日志收集,和可视化展示查询。

  • Logstash 用来做日志收集工作,通常在Logstash前会加一个Filebeat,由Filebeat来收集日志,Logstash做数据转换工作。
  • Elasticsearch做数据存储,以及生成索引数据,便于Kibana做检索。
  • Kibana做数据的展示,以及查询检索功能,我们通过检索关键词就能快速的查询到想要日志信息。

任务调度中心

项目中经常会用到定时功能,单体应用中,我们使用sping自带的Schedule,或者使用Quartz即可,在分布式应用中,我们就要集成分布式定时器,比如Quartz(Quartz配合数据库表也是支持分布式定时任务的),还有Elastic-Job、XXL-JOB等等。

Elastic-job 当当网基于quartz 二次开发的弹性分布式任务调度系统,功能丰富强大,采用zookeeper实现分布式协调,实现任务高可用以及分片。Elastic-Job是一个分布式调度的解决方案,由当当网开源,它由两个相互独立的子项目Elastic-Job-Lite和Elastic-Job-Cloud组成,使用Elastic-Job可以快速实现分布式任务调度。

XXL-JOB 是一个分布式任务调度平台(XXL是作者徐雪里姓名拼音的首字母),其核心设计目标是开发迅速、学习简单、轻量级、易扩展。将调度行为抽象形成“调度中心”公共平台,而平台自身并不承担业务逻辑,“调度中心”负责发起调度请求。将任务抽象成分散的JobHandler,交由“执行器”统一管理,“执行器”负责接收调度请求并执行对应的JobHandler中业务逻辑。因此,“调度”和“任务”两部分可以相互解耦,提高系统整体稳定性和扩展性。

分布式对象存储

项目中经常会有文件上传功能,比如图片,音频视频。在分布式架构中,我们将文件存储在节点服务器上显然是不行的,这时候,我们就需要引入分布式文件存储。常见方案有MinIo、阿里的OSS(收费),阿里FastDFS等等。
MinIO 是一款基于Go语言发开的高性能、分布式的对象存储系统。客户端支持Java,Net,Python,Javacript, Golang语言。

FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括:文件存储、文件同步、文件访问(文件上传、文件下载)等,解决了大容量存储和的问题。特别适合以文件为载体的在线服务,如相册网站、视频网站等等。文章来源地址https://www.toymoban.com/news/detail-416260.html

到了这里,关于一张图搞懂微服务架构设计的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 财务思维一张图

    系统研读了《肖星的财务思维课》和得到《贾宁·财务思维课》,尝试用一张最简单的图总结财务思维所学到精髓吧。 《肖星的财务思维课》 得到《贾宁·财务思维课》 附: 【清华大学】最好的财务课《商业的财务逻辑》(全7课)肖星教授 【清华大学】最好的财务课《商业

    2024年01月19日
    浏览(58)
  • 一张图学会python递归函数

    递归函数属于那种“难者不会,会者不难”的事情,回想自己大学时学习递归函数的经历,简直是痛不欲生,代码里没有一行是看不懂的,但就是理解不了它是怎样运行的。 等到自己悟通了原理,就又会觉得这东西太简单了,不明白自己当初为何想不清楚。 对于递归函数,

    2023年04月09日
    浏览(38)
  • 【Linux】一张图了解系统文件

    首先先认识磁盘结构 系统文件分布图 文件查找 文件删除 文件的增删改查都是围绕 inode 来完成的,所以当我们要进行文件删除的时候,只需要通过 inode 来获取到它对应的 block bitmap 和 inode bitmap 数据块容器和保存文件属性的位置置为 0即可 ,如果想要恢复,通过一定的方法设

    2024年02月11日
    浏览(49)
  • uniapp:手写签名,多张图合成一张图

    要实现的内容 :手写签名,协议内容。点击提交后:生成1张图片,有协议内容和签署日期和签署人。 实现的效果图如下: 1、签名页面

    2024年02月15日
    浏览(90)
  • 一张图快速了解 Istio 的 EnvoyFilter

    EnvoyFilter 提供了一种机制来定制 Istio Pilot 生成的 Envoy 配置。使用 EnvoyFilter 修改某些字段的值,添加特定的过滤器,甚至添加全新的侦听器、集群等等。 这个功能必须谨慎使用,因为不正确的配置可能会破坏整个网格的稳定性。与其他 Istio 网络对象不同,EnvoyFilter 是叠加应

    2024年02月08日
    浏览(49)
  • GLES学习笔记---立方体贴图(一张图)

    立方体贴图 如上图是一张2D纹理,我们需要将这个2D纹理贴到立方体上,立方体有6个面,所以上面的2D图分成了6个面,共有14个纹理坐标 上边的立方体一共8个顶点坐标,范围是[-1, 1]; 我们要做的是将纹理图贴到这6个面上面 我们绘制的时候使用了VBO、VAO、EBO、 indices里面是绘

    2024年01月19日
    浏览(53)
  • 网络安全——一张图看懂HTTPS建立过程

    · 准备工作(对应图中prepare1234) · 发起链接 · 最后 关于网络安全加密的介绍可以看之前文章: (数据的加密与签名) HTTPS建立过程相当复杂,下图为示意图,可以有整体认识,一般我们编程知道这些已足够。 如果你想仿照HTTPS实现类似加密,可以阅读下具体过程,作为参

    2024年04月12日
    浏览(45)
  • Unity 如何通过2D Sprite切割一张图为多张

    1、理解 在一些2D游戏开发中,我们常常使用2D Sprite把一张大图切割成多个小图使用。 这样做有不少好处,首先,通过精准使用小图,能够一定程度上节省内存,提高渲染性能。 其次把同类的小图做成一张大图在切割使用会更方便我们进行对资源的管理。 再者,在2D游戏中通

    2024年04月26日
    浏览(48)
  • 使用Python中的matplotlib将多个图片显示到一张图内

    在我们写论文或是汇报时,经常需要整合所得到的可视化数据结果,插入我们的论文中。如下所示的情况,我们需要将四个相关的弹性模量预测结果在一张图里展示。 使用matplotlib库中的子图(subplot)功能可以轻松而高效地实现这一过程,避免繁琐地手动调节。 具体代码如下,

    2024年02月06日
    浏览(54)
  • 【uniapp小程序-生成二维码+多个图片文字合并一张图】

    下载uqrcodejs: https://uqrcode.cn/doc/guide/getting-started.html

    2024年02月03日
    浏览(60)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包