时间序列分析——基于R | 第2章 时间序列的预处理习题代码

这篇具有很好参考价值的文章主要介绍了时间序列分析——基于R | 第2章 时间序列的预处理习题代码。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


时间序列分析——基于R | 第2章 时间序列的预处理习题

1.考虑序列{1,2,3,4,5,…,20}

1.1判断该序列是否平稳

x <- seq(1,20);x
##  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

1.2样本自相关系数

max_lag <- 6
acf_x <- acf(x, lag.max = max_lag, plot = FALSE)$acf
r_1_to_6 <- acf_x[2:(max_lag + 1)] ;r_1_to_6
## [1] 0.8500000 0.7015038 0.5560150 0.4150376 0.2800752 0.1526316
# 注意要从第2个元素开始提取,因为acf函数的结果向量的第一个元素对应滞后期数为0的自相关系数。

1.3序列自相关图

#加载必要的包
library(ggplot2)
library(ggfortify)
library(RColorBrewer)
library(forecast)
#设置颜色主题
my_palette <- brewer.pal(n = 8, name = "Dark2")

#绘制序列自相关图并美化
windowsFonts(myFont = windowsFont("思源宋体 SemiBold"))
ggAcf(x) +
  ggtitle("序列自相关图") + #添加标题
  xlab("滞后") + #添加x轴标签
  ylab("自相关系数") + #添加y轴标签
  theme_minimal(base_size = 12, base_family = 'myFont') +
  theme(plot.title = element_text(hjust = 0.5), #居中标题
        panel.grid.minor = element_blank(), #去除次要网格线
        panel.grid.major.x = element_line(size = 0.2, linetype = "dashed", color = "grey70"), #设置x轴主要网格线样式
        axis.line.x = element_line(size = 0.5, color = "black"), #设置x轴线条粗细和颜色
        axis.line.y = element_line(size = 0.5, color = "black"), #设置y轴线条粗细和颜色
        axis.text = element_text(size = 10, color = my_palette[1]), #设置刻度标签字体大小和颜色
        axis.title = element_text(size = 12, face = "bold", color = my_palette[2]), #设置轴标题字体大小、加粗和颜色
        panel.border = element_blank(), #去除面板边框
        panel.background = element_blank(), #去除面板背景
        legend.background = element_blank(), #去除图例背景
        legend.title = element_blank(), #去除图例标题
        legend.text = element_text(size = 10, color = my_palette[3]), #设置图例文本字体大小和颜色
        legend.position = c(0.9, 0.8)) + #设置图例位置
  scale_color_manual(values = my_palette[4:8]) #设置线条颜色
时间序列分析——基于R | 第2章 时间序列的预处理习题代码

2.1975-1980年夏威夷岛莫那罗亚火山每月释放的CO₂数据

2.1绘制时序图,判断平稳性

d2=c(t(read.table('./时间序列分析——基于R(第2版)习题数据/习题2.2数据.txt', sep = '\t')))
ts_d2 <- ts(d2, start = c(1975,1), frequency = 12);ts_d2
##         Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct
## 1975 330.45 330.97 331.64 332.87 333.61 333.55 331.90 330.05 328.58 328.31
## 1976 331.63 332.46 333.36 334.45 334.82 334.32 333.05 330.87 329.24 328.87
## 1977 332.81 333.23 334.55 335.82 336.44 335.99 334.65 332.41 331.32 330.73
## 1978 334.66 335.07 336.33 337.39 337.65 337.57 336.25 334.39 332.44 332.25
## 1979 335.89 336.44 337.63 338.54 339.06 338.95 337.41 335.71 333.68 333.69
## 1980 337.81 338.16 339.88 340.57 341.19 340.87 339.25 337.19 335.49 336.63
##         Nov    Dec
## 1975 329.41 330.63
## 1976 330.18 331.50
## 1977 332.05 333.53
## 1978 333.59 334.76
## 1979 335.05 336.53
## 1980 337.74 338.36
#加载必要的包library(ggplot2)
library(ggfortify)
library(RColorBrewer)
library(forecast)

# 绘制时序图
windowsFonts(myFont = windowsFont("思源宋体 SemiBold"))
ggplot() +
  geom_line(aes(x = time(ts_d2), y = ts_d2),
            color = "#74759b", size = 1.2) +
  labs(title = "Monthly CO2 Emissions from Mauna Loa, Hawaii, 1975-1980",
       x = "Year", y = "CO2 Emissions") +
  theme_minimal(base_size = 12, base_family = 'myFont') +
  theme(plot.title = element_text(face = "bold"),
        axis.title = element_text(face = "bold", colour = '#132c33'),
        axis.line = element_line(size = 0.75, colour = '#2b73af'),
        axis.ticks = element_line(size = 0.5, colour = '#2376b7'),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank())
时间序列分析——基于R | 第2章 时间序列的预处理习题代码

从时序图中可以看出,该序列存在较明显的季节性,同时也存在一定的趋势性。

2.2计算样本自相关系数

max_lag1 <- 24
acf_d2ts <- acf(ts_d2, lag.max = max_lag1, plot = FALSE)$acf
acf_d2ts[2:(max_lag1 + 1)] 
##  [1]  0.90750778  0.72171377  0.51251814  0.34982244  0.24689637  0.20309427
##  [7]  0.21020799  0.26428810  0.36433219  0.48471672  0.58456166  0.60197891
## [13]  0.51841257  0.36856286  0.20671211  0.08138070  0.00135460 -0.03247916
## [19] -0.02709893  0.01123597  0.08274806  0.17010715  0.24319854  0.25252294

2.3绘制自相关图

ggAcf(ts_d2, lag.max = 36) +
  theme_minimal(base_size = 10, base_family = "myFont") +
  theme(plot.title = element_text(face = "bold", size = 14, hjust = 0.5),
        axis.title = element_text(face = "bold", hjust = 0.5),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        axis.line = element_line(size = 0.75),
        axis.ticks = element_line(size = 0.5),
        axis.text = element_text(size = 12, color = "#815c94"),
        strip.text = element_text(size = 12, color = "#815c94", face = "bold"))
时间序列分析——基于R | 第2章 时间序列的预处理习题代码

从自相关图中可以看出,该序列存在较强的季节性和自相关性,不具有平稳性。

3.1945-1950年费城月度降雨量数据

3.1样本自相关系数

d3 <- c(t(read.table('./时间序列分析——基于R(第2版)习题数据/习题2.3数据.txt', sep = '\t')));
ts_d3 <- ts(d3, start = c(1945,1), frequency = 12);ts_d3
##        Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec
## 1945  69.3  80.0  40.9  74.9  84.6 101.1 225.0  95.3 100.6  48.3 144.5  28.3
## 1946  38.4  52.3  68.6  37.1 148.6 218.7 131.6 112.8  81.8  31.0  47.5  70.1
## 1947  96.8  61.5  55.6 171.7 220.5 119.4  63.2 181.6  73.9  64.8 166.9  48.0
## 1948 137.7  80.5 105.2  89.9 174.8 124.0  86.4 136.9  31.5  35.3 112.3  43.0
## 1949 160.8  97.0  80.5  62.5 158.2   7.6 165.9 106.7  92.2  63.2  26.2  77.0
## 1950  52.3 105.4 144.3  49.5 116.1  54.1 148.6 159.3  85.3  67.3 112.8  59.4
max_lag2 <- 24
acf_d3 <- acf(ts_d3, lag.max = max_lag2, plot = FALSE)$acf
acf_d3[2:(max_lag1 + 1)] 
##  [1]  0.012770216  0.041600613 -0.043230426 -0.178692841 -0.251298873
##  [6] -0.093810241 -0.067777725 -0.071978515  0.013882228  0.109450351
## [11]  0.217295088  0.315872697 -0.025053744  0.075320665 -0.141206897
## [16] -0.203589406 -0.245494618  0.066461869 -0.139454035 -0.034028373
## [21]  0.205723132 -0.009866008  0.080311638  0.118056190

3.2判断平稳性

#加载必要的包library(ggplot2)
library(ggfortify)
library(RColorBrewer)
library(forecast)

# 绘制时序图
ggplot(data = ts_d3, aes(x = seq_along(ts_d3), y = ts_d3)) +
  geom_line(color = "#0072B2", size = 1.2) +
  labs(x = "Time", y = "Monthly Precipitation (mm)", 
       title = "Monthly Precipitation in Philadelphia, 1945-1950") +
  theme_minimal(base_size = 14, base_family = "myFont") +
  theme(plot.title = element_text(face = "bold", size = 14, hjust = 0.5),
        axis.text = element_text(size = 12, color = "#0072B2"),
        axis.title = element_text(size = 12, face = "bold", color = "#0072B2"))
时间序列分析——基于R | 第2章 时间序列的预处理习题代码
# 绘制自相关图
ggAcf(ts_d3, lag.max = 24) +
  theme_minimal(base_size = 14, base_family = "myFont") +
  theme(plot.title = element_text(face = "bold", size = 14, hjust = 0.5),
        axis.text = element_text(size = 12, color = "#0072B2"),
        axis.title = element_text(size = 12, face = "bold", color = "#0072B2"))
时间序列分析——基于R | 第2章 时间序列的预处理习题代码

时序图显示了该数据集的所有观察值,其中每个点代表一个月的降雨量。我们可以看到,该序列具有一些季节性,但没有明显的趋势或周期性。

自相关图显示了每个滞后时点的自相关系数。我们可以看到,自相关系数在较短的滞后期内很高,随着滞后期的增加而逐渐降低。这表明该序列具有一些自相关性,但可能不是非常平稳。

3.3判断随机性

for (k in1:3) print(Box.test(d3, lag = 6*k, type = 'Ljung-Box'))
## 
##  Box-Ljung test
## 
## data:  d3
## X-squared = 8.5225, df = 6, p-value = 0.2023
## 
## 
##  Box-Ljung test
## 
## data:  d3
## X-squared = 23.36, df = 12, p-value = 0.02482
## 
## 
##  Box-Ljung test
## 
## data:  d3
## X-squared = 36.02, df = 18, p-value = 0.007015
#白噪声序列

4.判断序列是否为纯随机序列(ɑ=0.05)

# 假设前12个样本的自相关系数存储在一个名为 acf_x 的向量中
acf_x <- c(0.02, 0.05, 0.10, -0.02, 0.05, 0.01, 0.12, -0.06, 0.08, -0.05, 0.02, -0.05)

# 假设最大滞后阶数为10
max_lag <- 10# 计算样本自相关系数的标准误
se <- 1/sqrt(100)

# 计算Ljung-Box检验的统计量和临界值
lb_stat <- sum((acf_x[-1])^2/(1:length(acf_x[-1])))/100/(se^2)
lb_crit <- qchisq(0.95, max_lag)

# 判断序列是否为纯随机序列if (lb_stat < lb_crit) {
  cat("序列可能是纯随机序列")
} else {
  cat("序列不是纯随机序列")
}
## 序列可能是纯随机序列

5.某公司在2000-2003年间每月的销售量

5.1绘制时序图和样本自相关图

d5 <- read.table('./时间序列分析——基于R(第2版)习题数据/习题2.5数据.txt', header = TRUE);d5
##    月份 X2000年 X2001年 X2002年 X2003年
## 1   1月     153     134     145     117
## 2   2月     187     175     203     178
## 3   3月     234     243     189     149
## 4   4月     212     227     214     178
## 5   5月     300     298     295     248
## 6   6月     221     256     220     202
## 7   7月     201     237     231     162
## 8   8月     175     165     174     135
## 9   9月     123     124     119     120
## 10 10月     104     106      85      96
## 11 11月      85      87      67      90
## 12 12月      78      74      75      63
ts_d5 <- ts(c(d5$X2000年, d5$X2001年, d5$X2002年, d5$X2003年), 
              start = c(2000, 1), frequency = 12);ts_d5
##      Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 2000 153 187 234 212 300 221 201 175 123 104  85  78
## 2001 134 175 243 227 298 256 237 165 124 106  87  74
## 2002 145 203 189 214 295 220 231 174 119  85  67  75
## 2003 117 178 149 178 248 202 162 135 120  96  90  63
#加载必要的包library(ggplot2)
library(ggfortify)
library(RColorBrewer)
library(forecast)

# 绘制时序图
ggplot(data = ts_d5, aes(x = seq_along(ts_d5), y = ts_d5)) +
  geom_line(color = "#5d3131", size = 1.2) +
  labs(x = "时间", y = "销售量", 
       title = "销售量时序图") +
  theme_minimal(base_size = 14, base_family = "myFont") +
  theme(plot.title = element_text(face = "bold", size = 14, hjust = 0.5),
        axis.line = element_line(size = 0.5, colour = '#ed3333'),
        axis.ticks = element_line(size = 0.5, colour = '#ed3333'),
        axis.text = element_text(size = 12, color = "#daa45a"),
        axis.title = element_text(size = 12, face = "bold", color = "#5d3131"))
时间序列分析——基于R | 第2章 时间序列的预处理习题代码
# 绘制自相关图
ggAcf(ts_d5, lag.max = 12) + 
  labs(title = "Sample Autocorrelation Function", x = "Lag", y = "Autocorrelation") +
  theme_minimal() +
  theme(plot.title = element_text(size = 18, face = "bold", hjust = 0.5),
        axis.title = element_text(size = 14, face = "bold"),
        axis.text = element_text(size = 12),
        legend.position = "none")
时间序列分析——基于R | 第2章 时间序列的预处理习题代码

5.2判断该序列的平稳性和纯随机性

# 单位根检验library(tseries)
adf.test(ts_d5)
## Warning in adf.test(ts_d5): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  ts_d5
## Dickey-Fuller = -6.1123, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
# Ljung-Box检验
Box.test(ts_d5, lag = 12, type = "Ljung-Box")
## 
##  Box-Ljung test
## 
## data:  ts_d5
## X-squared = 190.4, df = 12, p-value < 2.2e-16

如果单位根检验的 p 值小于 0.05,则时间序列不是平稳的。如果 Ljung-Box 检验的 p 值小于 0.05,则时间序列不是纯随机的。根据结果,我们可以得出结论:该时间序列是非平稳的且非纯随机的。

6.1969年1月至1973年9月芝加哥海德公园内每28天发生的抢包案件数

6.1判断序列时间序列分析——基于R | 第2章 时间序列的预处理习题代码的平稳性和纯随机性

d6 <- c(t(read.table('./时间序列分析——基于R(第2版)习题数据/习题2.6数据.txt', sep = '\t')));d6
##  [1] 10 15 10 10 12 10  7  7 10 14  8 17 14 18  3  9 11 10  6 12 14 10 25 29 33
## [26] 33 12 19 16 19 19 12 34 15 36 29 26 21 17 19 13 20 24 12  6 14  6 12  9 11
## [51] 17 12  8 14 14 12  5  8 10  3 16  8  8  7 12  6 10  8 10  5 NA NA
# 设置主题
theme_custom <- function(base_size = 10, base_family = "myFont") {
  theme(
    text = element_text(size = base_size, family = base_family),
    plot.title = element_text(hjust = 0.5, size = base_size*1.2, face = "bold", colour = '#004a7c'),
    plot.subtitle = element_text(hjust = 0.5, size = base_size, face = "italic"),
    axis.title = element_text(size = base_size*1.1, face = "bold", colour = '#1b262c'),
    axis.text = element_text(size = base_size, colour = '#0f4c75'),
    legend.title = element_text(size = base_size*1.1, face = "bold", colour = '#3282b8'),
    legend.text = element_text(size = base_size, colour = '#bbe1fa')
  )
}

# 画时序图library(ggplot2)
ggplot(data.frame(x = na.omit(d6), t = 1:length(na.omit(d6))), aes(x = t, y = x)) + 
  geom_line(color = "#3B4F63") +
  labs(title = "Robberies in Heide Park (1969-1973)",
       subtitle = "Recorded every 28 days",
       x = "Time", y = "Number of robberies") +
  theme_custom()
时间序列分析——基于R | 第2章 时间序列的预处理习题代码
# 检验平稳性和纯随机性library(tseries)
adf.test(na.omit(d6)) # ADF检验
## 
##  Augmented Dickey-Fuller Test
## 
## data:  na.omit(d6)
## Dickey-Fuller = -2.168, Lag order = 4, p-value = 0.5069
## alternative hypothesis: stationary
kpss.test(na.omit(d6)) # KPSS检验
## 
##  KPSS Test for Level Stationarity
## 
## data:  na.omit(d6)
## KPSS Level = 0.35581, Truncation lag parameter = 3, p-value = 0.0962
ggAcf(na.omit(d6))+
  ggtitle("Autocorrelation of Robberies in Heide Park (1969-1973)")+
  theme_custom()
时间序列分析——基于R | 第2章 时间序列的预处理习题代码
ggPacf(na.omit(d6))+
  ggtitle("Partial Autocorrelation of Robberies in Heide Park (1969-1973)")+
  theme_custom()
时间序列分析——基于R | 第2章 时间序列的预处理习题代码
print(adf.test(na.omit(d6)))
## 
##  Augmented Dickey-Fuller Test
## 
## data:  na.omit(d6)
## Dickey-Fuller = -2.168, Lag order = 4, p-value = 0.5069
## alternative hypothesis: stationary
print(kpss.test(na.omit(d6)))
## 
##  KPSS Test for Level Stationarity
## 
## data:  na.omit(d6)
## KPSS Level = 0.35581, Truncation lag parameter = 3, p-value = 0.0962

由ADF和KPSS检验的结果可以看出,序列${x_t}$和${y_t}$均不平稳。由ACF和PACF图可以看出,序列${x_t}$和${y_t}$均存在较强的自相关性和季节性。

6.2对序列进行函数运算:时间序列分析——基于R | 第2章 时间序列的预处理习题代码,并判断序列时间序列分析——基于R | 第2章 时间序列的预处理习题代码的平稳性和纯随机性

# 计算差分序列
diff_data <- diff(na.omit(d6));diff_data
##  [1]   5  -5   0   2  -2  -3   0   3   4  -6   9  -3   4 -15   6   2  -1  -4   6
## [20]   2  -4  15   4   4   0 -21   7  -3   3   0  -7  22 -19  21  -7  -3  -5  -4
## [39]   2  -6   7   4 -12  -6   8  -8   6  -3   2   6  -5  -4   6   0  -2  -7   3
## [58]   2  -7  13  -8   0  -1   5  -6   4  -2   2  -5
# 画差分序列时序图
ggplot(data.frame(y = diff_data, t = 2:length(na.omit(d6))), aes(x = t, y = y)) + 
  geom_line(color = "#F15A60") +
  labs(title = "Differenced Robberies in Heide Park (1969-1973)",
       subtitle = "Recorded every 28 days",
       x = "Time", y = "Difference in number of robberies") +
  theme_custom()
时间序列分析——基于R | 第2章 时间序列的预处理习题代码
# 检验平稳性和纯随机性
adf.test(diff_data) # ADF检验
## Warning in adf.test(diff_data): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data
## Dickey-Fuller = -4.3625, Lag order = 4, p-value = 0.01
## alternative hypothesis: stationary
kpss.test(diff_data) # KPSS检验
## Warning in kpss.test(diff_data): p-value greater than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff_data
## KPSS Level = 0.07078, Truncation lag parameter = 3, p-value = 0.1
ggAcf(diff_data)+
  ggtitle("Autocorrelation of Differenced Robberies in Heide Park (1969-1973)")+
  theme_custom()
时间序列分析——基于R | 第2章 时间序列的预处理习题代码
ggPacf(diff_data)+
  ggtitle("Partial Autocorrelation of Differenced Robberies in Heide Park (1969-1973)")+
  theme_custom()
时间序列分析——基于R | 第2章 时间序列的预处理习题代码
print(adf.test(diff_data))
## Warning in adf.test(diff_data): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data
## Dickey-Fuller = -4.3625, Lag order = 4, p-value = 0.01
## alternative hypothesis: stationary
print(kpss.test(diff_data))
## Warning in kpss.test(diff_data): p-value greater than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff_data
## KPSS Level = 0.07078, Truncation lag parameter = 3, p-value = 0.1

对于差分序列${y_t}$,其平稳性得到了明显改善。ADF和KPSS检验的结果均表明,差分序列${y_t}$是平稳的。同时,由ACF和PACF图可以看出,差分序列${y_t}$不存在明显的自相关性和季节性。

7.1915-2004年澳大利亚每年与枪支有关的凶杀案死亡率(每10万人)

7.1绘制时序图,考察平稳特征

d7 <- read.table('./时间序列分析——基于R(第2版)习题数据/习题2.7数据.txt', header = TRUE)
ts_d7 <- ts(d7$死亡率,start = c(1915));ts_d7
## Time Series:
## Start = 1915 
## End = 2004 
## Frequency = 1 
##  [1] 0.5215052 0.4248284 0.4250311 0.4771938 0.8280212 0.6156186 0.3666270
##  [8] 0.4308883 0.2810287 0.4646245 0.2693951 0.5779049 0.5661151 0.5077584
## [15] 0.7507175 0.6808395 0.7661091 0.4561473 0.4977496 0.4193273 0.6095514
## [22] 0.4573370 0.5705478 0.3478996 0.3874993 0.5824285 0.2391033 0.2367445
## [29] 0.2626158 0.4240934 0.3652750 0.3750758 0.4090056 0.3891676 0.2402610
## [36] 0.1589496 0.4393373 0.5094681 0.3743465 0.4339828 0.4130557 0.3288928
## [43] 0.5186648 0.5486504 0.5469111 0.4963494 0.5308929 0.5957761 0.5570584
## [50] 0.5731325 0.5005416 0.5431269 0.5593657 0.6911693 0.4403485 0.5676662
## [57] 0.5969114 0.4735537 0.5923935 0.5975556 0.6334127 0.6057115 0.7046107
## [64] 0.4805263 0.7026860 0.7009017 0.6030854 0.6980919 0.5976560 0.8023421
## [71] 0.6017109 0.5993127 0.6025625 0.7016625 0.4995714 0.4980918 0.4975690
## [78] 0.6001830 0.3339542 0.2744370 0.3209428 0.5406671 0.4050209 0.2885961
## [85] 0.3275942 0.3132606 0.2575562 0.2138386 0.1861856 0.1592713
autoplot(ts_d7, xlab = "年份", ylab = "死亡率(每10万人)")+
  theme_custom()
时间序列分析——基于R | 第2章 时间序列的预处理习题代码

根据时序图可以看出,该序列的方差似乎并没有随着时间变化而发生显著的变化,因此可以初步认为该序列是平稳的。但是,为了进一步确定该序列的平稳性,需要绘制自相关图。

7.2绘制自相关图,分析该序列的平稳性

# 绘制自相关图
ggAcf(ts_d7, lag.max = 20)+
  ggtitle("自相关图")+
  theme_custom()
时间序列分析——基于R | 第2章 时间序列的预处理习题代码

由自相关图可以看出,该序列存在显著的正自相关,且自相关系数衰减缓慢,这表明该序列不是平稳的。为了进一步确定该序列的平稳性,需要对其进行一阶差分,得到一阶差分后的序列并绘制时序图和自相关图。

7.3如果该序列是平稳序列,则分析该序列的纯随机性,如果是非平稳序列,则分析该序列一阶差分后序列的平稳性。

# 进行一阶差分
diff_ts_d7 <- diff(ts_d7)
par(mfrow=c(1,2))
# 绘制差分后的时序图
autoplot(diff_ts_d7, xlab = "年份", ylab = "死亡率(每10万人)")+
  theme_custom()
时间序列分析——基于R | 第2章 时间序列的预处理习题代码
# 绘制差分后的自相关图
ggAcf(diff_ts_d7, lag.max = 20)+
  ggtitle("一阶差分后的自相关图")+
  theme_custom()
时间序列分析——基于R | 第2章 时间序列的预处理习题代码

由于差分后序列的自相关图中,几乎所有的自相关系数都在显著水平之下,表明序列具有平稳性,因此可以进行纯随机性检验。

library(lawstat)
## 
## 载入程辑包:'lawstat'
## The following object is masked from 'package:tseries':
## 
##     runs.test
runs.test(diff_ts_d7)
## 
##  Runs Test - Two sided
## 
## data:  diff_ts_d7
## Standardized Runs Statistic = 2.4535, p-value = 0.01415

由于p值大于0.05,无法拒绝原假设,因此认为该序列是一个纯随机序列。

8.1860-1955年密歇根湖每月平均水位的最高值序列

8.1绘制时序图,考察平稳特征

d8 <- read.table('./时间序列分析——基于R(第2版)习题数据/习题2.8数据.txt', header = TRUE)
ts_d8 <- ts(d8$水位,start = c(1860));ts_d8
## Time Series:
## Start = 1860 
## End = 1955 
## Frequency = 1 
##  [1] 83.30 83.50 83.20 82.60 82.20 82.10 81.70 82.20 81.60 82.10 82.70 82.80
## [13] 81.50 82.20 82.30 82.10 83.60 82.70 82.50 81.50 82.10 82.20 82.60 83.30
## [25] 83.10 83.30 83.70 82.90 82.30 81.80 81.60 80.90 81.00 81.30 81.40 80.20
## [37] 80.00 80.85 80.83 81.10 80.70 81.10 80.83 80.82 81.50 81.60 81.50 81.60
## [49] 81.80 81.10 80.50 80.00 80.70 81.30 80.70 80.00 81.10 81.87 81.91 81.30
## [61] 81.00 80.50 80.60 79.80 79.60 78.49 78.49 79.60 80.60 82.30 81.20 79.10
## [73] 78.60 78.70 78.00 78.60 78.70 78.60 79.70 80.00 79.30 79.00 80.20 81.50
## [85] 80.80 81.00 80.96 81.10 80.80 79.70 80.00 81.60 82.70 82.10 81.70 81.50
# 绘制时序图library(ggplot2)
ggplot(d8, aes(x = 年, y = 水位)) +
  geom_line(color = "steelblue", size = 1) +
  labs(title = "密歇根湖水位(1860-1955)", x = "年", y = "水位") +
  theme_custom()
时间序列分析——基于R | 第2章 时间序列的预处理习题代码

根据时序图可以看出,该序列存在周期性波动,但整体趋势基本稳定。

8.2绘制自相关图,分析该序列的平稳性

# 绘制自相关图
ggAcf(ts_d8, lag.max = 30)+
  ggtitle("自相关图") +
  xlab("Lag") +
  ylab("ACF") +
  theme_custom()
时间序列分析——基于R | 第2章 时间序列的预处理习题代码

自相关图显示出较强的正自相关性,表明该序列不是平稳序列,需要进行差分。

8.3如果该序列是平稳序列,则分析该序列的纯随机性,如果是非平稳序列,则分析该序列一阶差分后序列的平稳性。

# 进行一阶差分
diff_ts_d8 <- diff(ts_d8)
ggplot() +
  geom_line(aes(x = d8$年[-1], y = diff_ts_d8), color = "steelblue", size = 1) +
  labs(title = "密歇根湖水位一阶差分序列(1861-1955)", x = "年", y = "水位差分") +
  theme_custom()
## Don't know how to automatically pick scale for object of type <ts>. Defaulting
## to continuous.
时间序列分析——基于R | 第2章 时间序列的预处理习题代码
# 绘制自相关图
ggAcf(diff_ts_d8, lag.max = 30)+
  ggtitle("一阶差分自相关图")+
  theme_custom()
时间序列分析——基于R | 第2章 时间序列的预处理习题代码

一阶差分的时序图显示出,一阶差分序列的波动已经变得更加平稳。自相关图显示出,一阶差分序列的自相关系数都在置信区间内,表明一阶差分序列已经平稳。文章来源地址https://www.toymoban.com/news/detail-417113.html

1.本文参考资料为时间序列分析——基于R/王燕编著. —5版. —北京:中国人民大学出版社,2020.6
(基于R应用的统计学丛书)
ISBN 978-7-300-27898-8
2.本文的部分代码参考了ChatGPT给出的方法,经检验后有效。

到了这里,关于时间序列分析——基于R | 第2章 时间序列的预处理习题代码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据分析-Pandas如何轻松处理时间序列数据

    时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。此处选择巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 N O 2 ​ 数据作为样例。 python数据分析-数据表读写到pandas 经典算法-遗传算法的python实现 经典算法-遗传算法的一个简单例子 大

    2024年01月25日
    浏览(45)
  • 基于机器学习/深度学习的时间序列分析相关论文

    Robust Time Series Analysis and Applications: An Industrial Perspective, in  KDD  2022. Time Series in Healthcare: Challenges and Solutions, in  AAAI  2022. [[Link]](https://www.vanderschaar-lab.com/time-series-in-healthcare/) Time Series Anomaly Detection: Tools, Techniques and Tricks, in  DASFAA  2022. [[Link]](https://www.dasfaa2022.org//tutorials/T

    2024年02月13日
    浏览(49)
  • 时间序列分析——基于R(第2版)—第6章

    6-1 1962年1月至1975年12月牛奶月产奶量 分析它们受哪些确定性因素的影响,为该序列选择适当的确定性因素分解模型 提取该序列的趋势效应 提取该序列的季节效应 用指数平滑法对该序列做2年期预测 用arima季节模型拟合并预测该序列的发展 比较分析使用过的三种模型的拟合精

    2024年02月04日
    浏览(45)
  • 时间序列分析——基于R(第2版)—第4章

    4_1某公司过去50个月每月盈亏 绘制该序列的时序图 判断该序列的平稳性与纯随机性#平稳非白噪声 考察该序列自相关图和偏自相关图的性质 利用拟合模型预测该公司未来5年的盈亏情况 4_2某城市过去四年每个月人口净流入量 绘制该序列的时序图 判断该序列的平稳性与纯随机

    2024年02月04日
    浏览(40)
  • 基于PyTorch+LSTM的交通客流预测(时间序列分析)

    大家好,我是阿光。 本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。 正在更新中~ ✨ 🚨 我的项目环境: 平台:Windows10 语言环境:python3.7 编译器:PyCharm PyTorch版本:

    2023年04月16日
    浏览(53)
  • R——《时间序列分析——基于R》第5章 无季节效应的非平稳序列分析 习题1

    目录 1.导入数据并绘图 2.进行一阶差分并绘制该序列时序图 3.判断该序列的平稳性与纯随机性 4.考察该序列的自相关系数和偏自相关系数的性质 5.选择适当模型拟合该序列的发展 5.1. ARIMA(1,1,0)不带漂移项 5.2. ARIMA(1,1,0)带漂移项 5.3. ARIMA(0,1,1)不带漂移项   5.4. ARIMA(0,1,1)带漂移项

    2024年02月08日
    浏览(42)
  • 基于LSTM深度学习网络的时间序列分析matlab仿真

    目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程   matlab2022a        LSTM是一种循环神经网络(RNN)的变体,专门设计用于处理序列数据。LSTM网络通过记忆单元和门控机制来捕捉时间序列中的长期依赖关系,避免了传统RNN中

    2024年02月12日
    浏览(55)
  • GEE:基于GLDAS数据集分析土壤湿度的时间序列变化

    作者:CSDN @ _养乐多_ 本篇博客将介绍如何使用Google Earth Engine(GEE)进行土壤湿度数据的分析。我们将使用NASA GLDAS(Global Land Data Assimilation System)数据集,其中包括了关于土壤湿度的信息。通过该数据集,我们将了解土壤湿度在特定区域和时间段内的变化,并生成时间序列图

    2024年02月07日
    浏览(48)
  • 时间序列分析——基于R(第2版)—第2章习题答案

    2.2 1975-1980年夏威夷岛莫那罗亚火山每月释放的CO2数据 绘制时序图,并判断该序列是否平稳 计算该序列的样本自相关系数 绘制自相关图,并解释该图形 自相关系数长期位于0轴的一边,这是具有单调趋势序列的典型特征;同时呈现出正弦波动规律,这是具有周期性变化规律的

    2024年02月07日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包