学习实践ChatGLM-6B(部署+运行+微调)

这篇具有很好参考价值的文章主要介绍了学习实践ChatGLM-6B(部署+运行+微调)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、ChatGLM-6B内容简单介绍

该模型基于 General Language Model (GLM) 架构,具有 62 亿参数。
注:结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。
ChatGLM-6B可以实现的能力这是一个对话机器人,所以基本的问答,系统都支持。
官方提供的使用实例:
自我认知
提纲写作
文案写作
邮件助手
信息抽取
角色扮演
评论比较
旅游向导

运行界面

学习实践ChatGLM-6B(部署+运行+微调)

2、ChatGLM-6B模型实战

GLM模型GitHub代码地址
部署步骤如下:(注意使用的是Linux系统,本人数次尝试用Windows以失败告终)

# 新建chatglm环境
conda create -n chatglm python==3.8
# 激活chatglm环境
conda activate chatglm
# 安装PyTorch环境(根据自己的cuda版本选择合适的torch版本)
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
# 安装gradio用于启动图形化web界面
pip install gradio
# 安装运行依赖
pip install -r requirement.txt
#基于 Gradio 的网页版 Demo
python web_demo.py
#命令行 Demo
python cli_demo.py

网页版 Demo运行结果

学习实践ChatGLM-6B(部署+运行+微调)

命令行 Demo运行结果

学习实践ChatGLM-6B(部署+运行+微调)
值得注意的是: 显存够用下面这些不用管,当显存不够时(即GPU 显存有限低于13GB),尝试以量化方式加载模型的,需要添加代码.quantize(8) .quantize(4)
int8精度加载,需要10G显存;
int4精度加载,需要6G显存;

#将句子对列表传给tokenizer,就可以对整个数据集进行分词处理
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) #将文本转换为模型能理解的数字# 自动加载该模型训练时所用的分词器

model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().quantize(6).cuda()#从checkpoint实例化任何模型,下载预训练模型

3、ChatGLM-6B Ptuning-可基于模型利用自己数据集实现模型微调

微调GitHub代码地址文章来源地址https://www.toymoban.com/news/detail-417312.html

  1. 运行微调除 ChatGLM-6B 的依赖之外,还需跟加安装以下依赖:
pip install transformers==4.27.1
pip install rouge_chinese nltk jieba datasets
  1. 下载数据集(当然也可以是自己需要待训练的数据集)
    从 Google Drive 或者 Tsinghua Cloud 下载处理好的 ADGEN 数据集,将解压后的 AdvertiseGen 目录放到本目录下,如下图所示。
    学习实践ChatGLM-6B(部署+运行+微调)
    学习实践ChatGLM-6B(部署+运行+微调)
  2. train.sh 中的 PRE_SEQ_LEN 和 LR 分别是 soft prompt 长度和训练的学习率,可以进行调节以取得最佳的效果。P-Tuning-v2 方法会冻结全部的模型参数,可通过调整 quantization_bit 来被原始模型的量化等级,不加此选项则为 FP16 精度加载。在默认配置 quantization_bit=4、per_device_train_batch_size=1、gradient_accumulation_steps=16 下,INT4 的模型参数被冻结,一次训练迭代会以 1 的批处理大小进行 16 次累加的前后向传播,等效为 16 的总批处理大小,此时最低只需 6.7G 显存。若想在同等批处理大小下提升训练效率,可在二者乘积不变的情况下,加大 per_device_train_batch_size 的值,但也会带来更多的显存消耗,请根据实际情况酌情调整。
    官方给出的实验设置如下:
    学习实践ChatGLM-6B(部署+运行+微调)
    学习实践ChatGLM-6B(部署+运行+微调)
    简单修改后执行bash train.sh运行程序即可
    学习实践ChatGLM-6B(部署+运行+微调)

到了这里,关于学习实践ChatGLM-6B(部署+运行+微调)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于 P-Tuning v2 进行 ChatGLM2-6B 微调实践

    1. SFT监督微调:适用于在源任务中具有较高性能的模型进行微调,学习率较小。常见任务包括中文实体识别、语言模型训练、UIE模型微调。优点是可以快速适应目标任务,但缺点是可能需要较长的训练时间和大量数据。 2. LoRA微调:通过高阶矩阵秩的分解减少微调参数量,不

    2024年02月08日
    浏览(60)
  • 浅尝prompt咒语设计:one-shot微调chatglm-6b实践信息抽取

    近期以chatgpt等文生成LLMS爆火,国内也逐渐开源了中文版的chatgpt,本文以清华大学开源的6b的chatglm为例,实践one-shot微调,设计prompt咒语在信息抽取领域的实验效果。 给定一个JD的职位要求,需要从描述中抽取出相应的实体。 例如: 相应的schema的实体为: prompt设计主要点:

    2024年02月11日
    浏览(54)
  • ChatGLM2-6B! 我跑通啦!本地部署+微调(windows系统)

    记录一下此时此刻,2023年7月8日22点04,从ChatGLM2-6B在7月4日开放了ptuning到此时此刻,ChatGLM2-6B的微调终于被哥们跑通了! 从 本地部署ChatGLM2-6B 到 本地进行P-tuning微调 ,再到最后的 模型检测 ,哥们全跑通了! 这里非常感谢ChatGLM2-6B|开源本地化语言模型这篇博客!因为我布置

    2024年02月16日
    浏览(48)
  • ChatGLM-6B 在 ModelWhale和本地 平台的部署与微调教程

    ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。 ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优

    2024年02月09日
    浏览(43)
  • 类ChatGPT项目的部署与微调(下):从ChatGLM-6b到ChatDoctor

    随着『GPT4多模态/Microsoft 365 Copilot/Github Copilot X/ChatGPT插件』的推出,绝大部分公司的技术 产品 服务,以及绝大部分人的工作都将被革新一遍 类似iPhone的诞生 大家面向iOS编程 有了App Store 现在有了ChatGPT插件/GPT应用商店,以后很多公司 很多人面向GPT编程(很快技术人员

    2023年04月10日
    浏览(47)
  • ChatGLM-6B 部署与 P-Tuning 微调实战-使用Pycharm实战

    ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。 ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优

    2024年02月15日
    浏览(45)
  • 类ChatGPT的部署与微调(下):从ChatGLM-6b到ChatDoctor、可商用

    随着『GPT4多模态/Microsoft 365 Copilot/Github Copilot X/ChatGPT插件』的推出,绝大部分公司的技术 产品 服务,以及绝大部分人的工作都将被革新一遍 类似iPhone的诞生 大家面向iOS编程 有了App Store 现在有了ChatGPT插件/GPT应用商店,以后很多公司 很多人面向GPT编程(很快技术人员

    2023年04月26日
    浏览(43)
  • 【本地大模型部署与微调】ChatGLM3-6b、m3e、one-api、Fastgpt、LLaMA-Factory

    本文档详细介绍了使用ChatGLM3-6b大模型、m3e向量模型、one-api接口管理以及Fastgpt的知识库,成功的在本地搭建了一个大模型。此外,还利用LLaMA-Factory进行了大模型的微调。 1.ChatGLM3-6b 2.m3e 3.One-API 4.Fastgpt 5.LLaMA-Factory 1.1创建腾讯云服务器 注意: ChatGLM3-6b的大模型40多个G,购买腾讯

    2024年03月22日
    浏览(45)
  • Windows下cpu部署运行清华大学ChatGLM-6B语言模型(详解)

    ChatGLM-6B 清华大学实现的 一个开源的、支持中英双语 、 支持图像理解 的对话语言模型 。 它 基于

    2024年02月12日
    浏览(56)
  • LLMs之ChatGLM2:ChatGLM2-6B本地部署之单机推理(API/CLI/GUI)、低成本部署(GPU量化部署/CPU及其量化部署/Mac部署/多卡部署)、有限资源下高效微调(全参/P-t

    LLMs之ChatGLM2:ChatGLM2-6B本地部署之单机推理(API/CLI/GUI)、低成本部署(GPU量化部署/CPU及其量化部署/Mac部署/多卡部署)、有限资源下高效微调(全参/P-tuning v2)、模型评估和推理之图文教程之详细攻略 目录 一、配置基础环境及其注意事项 第一步、检测软硬件环境

    2024年02月07日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包