带约束条件的运筹规划问题求解(模拟退火算法实现)

这篇具有很好参考价值的文章主要介绍了带约束条件的运筹规划问题求解(模拟退火算法实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0. 写在前面

超级简单的模拟退火算法实现ε٩(๑> ₃ <)۶з搭配最简单的线性规划模型进行讲解!但是如果需要的话,可以直接修改程序求解非线性问题哦(´つヮ⊂︎)

1. 模型描述及处理

1.1 线性规划模型

\[max\,f(x)=10x_1+9x_2 \]

\(s.t.\)

\[6x_1+5x_2\leq{60}\tag{1} \]
\[10x_1+20x_2\leq{150}\tag{2} \]
\[0\leq{x_1}\leq{8}\tag{3} \]
\[0\leq{x_2}\leq{8}\tag{4} \]

1.2 引入惩罚函数处理模型

对约束条件引入惩罚函数:

  • 对约束条件(1),惩罚函数为:\(p_1=max(0,6x_1+5x_2-60)^2\)

  • 对约束条件(2),惩罚函数为:\(p_2=max(0,10x_1+20x_2-150)^2\)

那么,该问题的惩罚函数可以表示为下面的式子,其中\(M\)为惩罚因子,在传统运筹学求解里通常取无穷大,但在模拟退火算法里,它是随着迭代次数的增加而增大的。

\[P(x)=M(p_1+p_2) \]

由此,可将该问题的约束条件放入目标函数中,此时模型变为:

\[min\,g(x)=-(10x_1+9x_2)+P(x)\quad\forall{x_1,x_2}\in{[0,8]} \]

2. 程序实现

import math                         
import random                   
import pandas as pd                 
import numpy as np                  
import matplotlib.pyplot as plt
from datetime import datetime
 
# 子程序:定义优化问题的目标函数
def cal_Energy(X, nVar, mk): 	# m(k):惩罚因子,随迭代次数 k 逐渐增大
    p1 = (max(0, 6*X[0]+5*X[1]-60))**2
    p2 = (max(0, 10*X[0]+20*X[1]-150))**2
    fx = -(10*X[0]+9*X[1])
    return fx+mk*(p1+p2)
 
# 子程序:模拟退火算法的参数设置
def ParameterSetting():
    cName = "funcOpt"           # 定义问题名称 YouCans, XUPT
    nVar = 2                    # 给定自变量数量,y=f(x1,..xn)
    xMin = [0, 0]               # 给定搜索空间的下限,x1_min,..xn_min
    xMax = [8, 8]               # 给定搜索空间的上限,x1_max,..xn_max
    tInitial = 100.0            # 设定初始退火温度(initial temperature)
    tFinal  = 1                 # 设定终止退火温度(stop temperature)
    alfa    = 0.98              # 设定降温参数,T(k)=alfa*T(k-1)
    meanMarkov = 100            # Markov链长度,也即内循环运行次数
    scale   = 0.5               # 定义搜索步长,可以设为固定值或逐渐缩小
    return cName, nVar, xMin, xMax, tInitial, tFinal, alfa, meanMarkov, scale
 
# 模拟退火算法
def OptimizationSSA(nVar,xMin,xMax,tInitial,tFinal,alfa,meanMarkov,scale):
    # ====== 初始化随机数发生器 ======
    randseed = random.randint(1, 100)
    random.seed(randseed)  # 随机数发生器设置种子,也可以设为指定整数
    # ====== 随机产生优化问题的初始解 ======
    xInitial = np.zeros((nVar))   # 初始化,创建数组
    for v in range(nVar):
        # xInitial[v] = random.uniform(xMin[v], xMax[v]) # 产生 [xMin, xMax] 范围的随机实数
        xInitial[v] = random.randint(xMin[v], xMax[v]) # 产生 [xMin, xMax] 范围的随机整数
    # 调用子函数 cal_Energy 计算当前解的目标函数值
    fxInitial = cal_Energy(xInitial, nVar, 1) # m(k):惩罚因子,初值为 1
    # ====== 模拟退火算法初始化 ======
    xNew = np.zeros((nVar))         # 初始化,创建数组
    xNow = np.zeros((nVar))         # 初始化,创建数组
    xBest = np.zeros((nVar))        # 初始化,创建数组
    xNow[:]  = xInitial[:]          # 初始化当前解,将初始解置为当前解
    xBest[:] = xInitial[:]          # 初始化最优解,将当前解置为最优解
    fxNow  = fxInitial              # 将初始解的目标函数置为当前值
    fxBest = fxInitial              # 将当前解的目标函数置为最优值
    print('x_Initial:{:.6f},{:.6f},\tf(x_Initial):{:.6f}'.format(xInitial[0], xInitial[1], fxInitial))
    recordIter = []                 # 初始化,外循环次数
    recordFxNow = []                # 初始化,当前解的目标函数值
    recordFxBest = []               # 初始化,最佳解的目标函数值
    recordPBad = []                 # 初始化,劣质解的接受概率
    kIter = 0                       # 外循环迭代次数,温度状态数
    totalMar = 0                    # 总计 Markov 链长度
    totalImprove = 0                # fxBest 改善次数
    nMarkov = meanMarkov            # 固定长度 Markov链
    # ====== 开始模拟退火优化 ======
    # 外循环,直到当前温度达到终止温度时结束
    tNow = tInitial                 # 初始化当前温度(current temperature)
    while tNow >= tFinal:           # 外循环,直到当前温度达到终止温度时结束
        # 在当前温度下,进行充分次数(nMarkov)的状态转移以达到热平衡
        kBetter = 0                 # 获得优质解的次数
        kBadAccept = 0              # 接受劣质解的次数
        kBadRefuse = 0              # 拒绝劣质解的次数
        # ---内循环,循环次数为Markov链长度
        for k in range(nMarkov):    # 内循环,循环次数为Markov链长度
            totalMar += 1           # 总 Markov链长度计数器
            # ---产生新解
            # 产生新解:通过在当前解附近随机扰动而产生新解,新解必须在 [min,max] 范围内
            # 方案 1:只对 n元变量中的一个进行扰动,其它 n-1个变量保持不变
            xNew[:] = xNow[:]
            v = random.randint(0, nVar-1)   # 产生 [0,nVar-1]之间的随机数
            xNew[v] = round(xNow[v] + scale * (xMax[v]-xMin[v]) * random.normalvariate(0, 1))
            # 满足决策变量为整数,采用最简单的方案:产生的新解按照四舍五入取整
            xNew[v] = max(min(xNew[v], xMax[v]), xMin[v])  # 保证新解在 [min,max] 范围内
            # ---计算目标函数和能量差
            # 调用子函数 cal_Energy 计算新解的目标函数值
            fxNew = cal_Energy(xNew, nVar, kIter)
            deltaE = fxNew - fxNow
            # ---按 Metropolis 准则接受新解
            # 接受判别:按照 Metropolis 准则决定是否接受新解
            if fxNew < fxNow:  # 更优解:如果新解的目标函数好于当前解,则接受新解
                accept = True
                kBetter += 1
            else:  # 容忍解:如果新解的目标函数比当前解差,则以一定概率接受新解
                pAccept = math.exp(-deltaE / tNow)  # 计算容忍解的状态迁移概率
                if pAccept > random.random():
                    accept = True  # 接受劣质解
                    kBadAccept += 1
                else:
                    accept = False  # 拒绝劣质解
                    kBadRefuse += 1
            # 保存新解
            if accept == True:  # 如果接受新解,则将新解保存为当前解
                xNow[:] = xNew[:]
                fxNow = fxNew
                if fxNew < fxBest:  # 如果新解的目标函数好于最优解,则将新解保存为最优解
                    fxBest = fxNew
                    xBest[:] = xNew[:]
                    totalImprove += 1
                    scale = scale*0.99  # 可变搜索步长,逐步减小搜索范围,提高搜索精度
        # ---内循环结束后的数据整理
        # 完成当前温度的搜索,保存数据和输出
        pBadAccept = kBadAccept / (kBadAccept + kBadRefuse)  # 劣质解的接受概率
        recordIter.append(kIter)  # 当前外循环次数
        recordFxNow.append(round(fxNow, 4))  # 当前解的目标函数值
        recordFxBest.append(round(fxBest, 4))  # 最佳解的目标函数值
        recordPBad.append(round(pBadAccept, 4))  # 最佳解的目标函数值
        if kIter%10 == 0:                           # 模运算,商的余数
            print('i:{},t(i):{:.2f}, badAccept:{:.6f}, f(x)_best:{:.6f}'.\
                format(kIter, tNow, pBadAccept, fxBest))
        # 缓慢降温至新的温度,降温曲线:T(k)=alfa*T(k-1)
        tNow = tNow * alfa
        kIter = kIter + 1
        fxBest = cal_Energy(xBest, nVar, kIter)  # 由于迭代后惩罚因子增大,需随之重构增广目标函数
        # ====== 结束模拟退火过程 ======
    print('improve:{:d}'.format(totalImprove))
    return kIter,xBest,fxBest,fxNow,recordIter,recordFxNow,recordFxBest,recordPBad
# 结果校验与输出
def ResultOutput(cName,nVar,xBest,fxBest,kIter,recordFxNow,recordFxBest,recordPBad,recordIter):
    # ====== 优化结果校验与输出 ======
    fxCheck = cal_Energy(xBest, nVar, kIter)
    if abs(fxBest - fxCheck)>1e-3:   # 检验目标函数
        print("Error 2: Wrong total millage!")
        return
    else:
        print("\nOptimization by simulated annealing algorithm:")
        for i in range(nVar):
            print('\tx[{}] = {:.1f}'.format(i,xBest[i]))
        print('\n\tf(x) = {:.1f}'.format(cal_Energy(xBest,nVar,0)))
    return
# 主程序
def main(): # YouCans, XUPT
    # 参数设置,优化问题参数定义,模拟退火算法参数设置
    [cName, nVar, xMin, xMax, tInitial, tFinal, alfa, meanMarkov, scale] = ParameterSetting()
    # print([nVar, xMin, xMax, tInitial, tFinal, alfa, meanMarkov, scale])
 
    # 模拟退火算法    
    [kIter,xBest,fxBest,fxNow,recordIter,recordFxNow,recordFxBest,recordPBad] = OptimizationSSA(nVar,xMin,xMax,tInitial,tFinal,alfa,meanMarkov,scale)
    # print(kIter, fxNow, fxBest, pBadAccept)
 
    # 结果校验与输出
    ResultOutput(cName, nVar,xBest,fxBest,kIter,recordFxNow,recordFxBest,recordPBad,recordIter)
 
if __name__ == '__main__':
    main()

输出结果:文章来源地址https://www.toymoban.com/news/detail-417817.html

x_Initial:0.000000,4.000000,	f(x_Initial):-36.000000
i:0,t(i):100.00, badAccept:0.925373, f(x)_best:-152.000000
i:10,t(i):81.71, badAccept:0.671053, f(x)_best:-98.000000
i:20,t(i):66.76, badAccept:0.722892, f(x)_best:-98.000000
i:30,t(i):54.55, badAccept:0.704225, f(x)_best:-98.000000
i:40,t(i):44.57, badAccept:0.542169, f(x)_best:-98.000000
i:50,t(i):36.42, badAccept:0.435294, f(x)_best:-98.000000
i:60,t(i):29.76, badAccept:0.359551, f(x)_best:-98.000000
i:70,t(i):24.31, badAccept:0.717647, f(x)_best:-98.000000
i:80,t(i):19.86, badAccept:0.388235, f(x)_best:-98.000000
i:90,t(i):16.23, badAccept:0.555556, f(x)_best:-98.000000
i:100,t(i):13.26, badAccept:0.482353, f(x)_best:-98.000000
i:110,t(i):10.84, badAccept:0.527473, f(x)_best:-98.000000
i:120,t(i):8.85, badAccept:0.164948, f(x)_best:-98.000000
i:130,t(i):7.23, badAccept:0.305263, f(x)_best:-98.000000
i:140,t(i):5.91, badAccept:0.120000, f(x)_best:-98.000000
i:150,t(i):4.83, badAccept:0.422680, f(x)_best:-98.000000
i:160,t(i):3.95, badAccept:0.111111, f(x)_best:-98.000000
i:170,t(i):3.22, badAccept:0.350000, f(x)_best:-98.000000
i:180,t(i):2.63, badAccept:0.280000, f(x)_best:-98.000000
i:190,t(i):2.15, badAccept:0.310000, f(x)_best:-98.000000
i:200,t(i):1.76, badAccept:0.390000, f(x)_best:-98.000000
i:210,t(i):1.44, badAccept:0.390000, f(x)_best:-98.000000
i:220,t(i):1.17, badAccept:0.380000, f(x)_best:-98.000000
improve:10

Optimization by simulated annealing algorithm:
	x[0] = 8.0
	x[1] = 2.0

	f(x) = -98.0

到了这里,关于带约束条件的运筹规划问题求解(模拟退火算法实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 97基于matlab的改进的带记忆的模拟退火算法求解TSP问题

    基于matlab的改进的带记忆的模拟退火算法求解TSP问题,采用多普勒型降温曲线描述迭代过程,在传统算法的基础上增加记忆功能,可测试中国31/64/144以及att48城市的数据,也可自行输入数据进行测试,测试结果基本达到当前最优水平。duoci.m为主文件。数据可更换自己的,程序

    2024年02月05日
    浏览(38)
  • 【多目标规划问题求解】ε-约束算法

    TIME:2022/07/30 Author:雾雨霜星 Web:雾雨霜星的小站 小站原文链接:https://www.shuangxing.top/#/post?id=27 [1]Nima Amjady and Jamshid Aghaei and Heidar Ali Shayanfar. Stochastic Multiobjective Market Clearing of Joint Energy and Reserves Auctions Ensuring Power System Security[J]. IEEE Transactions on Power Systems, 2009, 24(4) : 1841-1854. [

    2024年02月05日
    浏览(124)
  • 湘潭大学 算法设计与分析实验 回溯 动态规划 贪心 模拟退火解决背包问题

    https://download.csdn.net/download/SQ_ZengYX/88620871 测试用例

    2024年02月02日
    浏览(45)
  • 运筹系列82:使用动态规划求解TSP问题

    定义 c ( s , k ) c(s,k) c ( s , k ) 为当前在 k k k ,待访问点的集合 s s s ,最后返回城市0的最短路径,那么Bellman方程为: c ( s , k ) = min ⁡ i ∈ s { c ( s − { i } , i ) + d i , k } c(s,k)=min_{i in s}{c(s-{i},i)+d_{i,k}} c ( s , k ) = min i ∈ s ​ { c ( s − { i } , i ) + d i , k ​ } 为了使用方便,这里

    2024年02月06日
    浏览(33)
  • 运筹系列87:julia求解随机动态规划问题入门

    随机动态规划问题的特点是: 有多个阶段,每个阶段的随机性互不相关,且有有限个实现值 (finite realizations) 具有马尔可夫性质,即每个阶段只受上一个阶段影响,可以用状态转移方程来描述阶段与阶段之间的变化过程。 我们使用julia的SDDP算法包来求解随机动态规划问题。

    2024年01月16日
    浏览(31)
  • 计算机设计大赛国奖作品_5. 模拟退火求解旅行商问题

    本系列是2021年中国大学生计算机设计大赛作品“环境监测无人机航线优化”的相关文档,获得2021年西北赛区一等奖,国赛三等奖。学生习作,只供大家参考。 计算机设计大赛国奖作品_1. 项目概要 计算机设计大赛国奖作品_2. 报名材料 计算机设计大赛国奖作品_3. 需求分析 计

    2023年04月09日
    浏览(42)
  • 【运筹优化】子集和问题(Subset Sum Problems , SSP)介绍 + 动态规划求解 + Java代码实现

    子集和问题(Subset Sum Problems , SSP),它是复杂性理论中最重要的问题之一。 SSP会给定一组整数 a 1 , a 2 , . . . . , a n a_1,a_2,....,a_n a 1 ​ , a 2 ​ , .... , a n ​ ,最多 n n n 个整数,我们需要判断是否存在一个非空子集,使得子集的总和为 M M M 整数?如果存在则需要输出该子集。

    2024年01月17日
    浏览(32)
  • OM | 强化学习 + 约束规划求解组合优化问题

    组合优化在航空航天、交通规划以及经济学等众多学科领域中有广泛应用,其目标是在有限集中寻找最优解。然而状态空间过大的问题让目前组合优化变得棘手。在过去的几年中,使用深度强化学习(deep reinforcement learning,DRL)解决组合优化问题受到广泛关注。然而,现有的

    2024年02月10日
    浏览(37)
  • 量子退火算法入门(2):有约束优化问题的QUBO怎么求?

    第一篇文章讲述了,怎么从二次多项式获得QUBO,获得QUBO后,量子退火法就可以直接给你最优解(没有特殊说明的话,所有的变量都是0或1)。其实,实际问题一般都是有约束的,比如上篇的例题加上约束条件后。 这种带约束的优化问题,我们要求出满足约束条件下的令H值最

    2023年04月14日
    浏览(36)
  • 机器人避障路径规划的MATLAB模拟退火算法

    机器人避障路径规划的MATLAB模拟退火算法 在机器人路径规划中,避免障碍物是一个重要的问题。模拟退火算法是一种启发式优化算法,可以用于解决路径规划问题。在本文中,我们将使用MATLAB实现一个基于模拟退火算法的机器人避障路径规划程序。 首先,我们需要定义问题

    2024年02月06日
    浏览(29)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包