Numpy 数组切片

这篇具有很好参考价值的文章主要介绍了Numpy 数组切片。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、列表切片(一维数组)

1.1、切片原理

列表切片是从原始列表中提取列表的一部分的过程。在列表切片中,我们将根据所需内容(如,从何处开始,结束以及增量进行切片)剪切列表。Python中符合序列的有序序列都支持切片(slice),例如列表,字符串,元组。

规则:

存储对象[start : end : step] 

start : 起始索引,从0开始,-1表示结束
end:结束索引,不包含
step:步长;步长为正时,从左向右取值。步长为负时,反向取值

Numpy 数组切片

1.2、切片使用

1.2.1、获取列表中的元素
>>> l1 = [3, 5, 7, 10, 13, 15, 17, 20, 23, 25]
>>> l1
[3, 5, 7, 10, 13, 15, 17, 20, 23, 25]
>>> midd_num=int(len(l1)/2)
>>> midd_num
5
>>> l1[midd_num:]      # 获取下标 5 及其之后的数据
[15, 17, 20, 23, 25]
>>> l1[:midd_num]      # 获取下标 5 之前的数据
[3, 5, 7, 10, 13]
>>> l1[-1]             # 获取列表最后一个数据
25
>>> l1[-2]             # 获取列表逆序第二个数据
23
>>> l1[-2:]            # 获取列表逆序后两个数据
[23, 25]
>>> l1[2:8]            # 获取列表3-8d的数据
[7, 10, 13, 15, 17, 20]
>>> l1[::2]            # 获取整个列表且步长为2
[3, 7, 13, 17, 23]
>>> l1[1::2]           # 从第二个开始获取整个列表且步长为2
[5, 10, 15, 20, 25]
>>> l1[0:90:2]         # !!!不存在越界问题,体现了健壮性
[3, 7, 13, 17, 23]     
1.2.2、列表逆序

通过设置步长为 -1实现,如下:

>>> l1[::-1]
[25, 23, 20, 17, 15, 13, 10, 7, 5, 3]
1.2.3、修改列表元素

切片赋值的办法实现,如下:

>>> l1
[3, 5, 7, 10, 13, 15, 17, 20, 23, 25]
>>> l1[0:1]
[3]
>>> l1[0:1]=["hello"]
>>> l1
['hello', 5, 7, 10, 13, 15, 17, 20, 23, 25]
>>> l1[1:2]
[5]
>>> l1[1:2]="world"    # 注意赋值类型需要为列表
>>> l1
['hello', 'w', 'o', 'r', 'l', 'd', 7, 10, 13, 15, 17, 20, 23, 25]
>>> l1[0:2]
[3, 5]
>>> l1[0:2]=["hello", "world"]   # 同时修改多个数据
>>> l1
['hello', 'world', 7, 10, 13, 15, 17, 20, 23, 25]
1.2.4、插入新元素

在空白处插入,如下:

>>> l1=[3, 5, 7, 10, 13, 15, 17, 20, 23, 25]
>>> l1[:0]=["nihao"]
>>> l1
['nihao', 3, 5, 7, 10, 13, 15, 17, 20, 23, 25]
>>> l1=[3, 5, 7, 10, 13, 15, 17, 20, 23, 25]
>>> l1[:1]=["nihao","shijie"]   # 会替换掉 '3'
>>> l1
['nihao', 'shijie', 5, 7, 10, 13, 15, 17, 20, 23, 25]
>>> l1=[3, 5, 7, 10, 13, 15, 17, 20, 23, 25]
>>> l1[:1]
[3]
>>> l1[:0]=["nihao","shijie"]  # 插入多个
>>> l1
['nihao', 'shijie', 3, 5, 7, 10, 13, 15, 17, 20, 23, 25]
>>> l1=[3, 5, 7, 10, 13, 15, 17, 20, 23, 25]
>>> l1[5]
15
>>> l1[5:5]=["nihao", "shijie"]
>>> l1
[3, 5, 7, 10, 13, 'nihao', 'shijie', 15, 17, 20, 23, 25]
1.2.5、删除元素

给列表某个值赋空值,如下:

>>> l1=[3, 5, 7, 10, 13, 15, 17, 20, 23, 25]
>>> l1[:3]
[3, 5, 7]
>>> l1[:3]=[]
>>> l1
[10, 13, 15, 17, 20, 23, 25]

>>> l1=[3, 5, 7, 10, 13, 15, 17, 20, 23, 25]
>>> l1[:3]
[3, 5, 7]
>>> del(l1[:3])    # 同样可以实现上面结果
>>> l1
[10, 13, 15, 17, 20, 23, 25]
1.2.6、复制元素(浅拷贝)
>>> l1=[3, 5, 7, 10, 13, 15, 17, 20, 23, 25]
>>> l2=l1[:]
>>> l2
[3, 5, 7, 10, 13, 15, 17, 20, 23, 25]
>>> l2 is l1
False
>>> l2=l1
>>> l2 is l1
True
>>> import copy
>>> l2=copy.copy(l1)       # 浅拷贝
>>> l2 is l1
False
>>> l2=copy.deepcopy(l1)   # 深拷贝
>>> l2 is l1
False

二、多维数组切片

多为数组的切片操作与一维数组一致,不同维度上的操作使用’,'隔开就好

2.1、认识数组的维度

arr.ndim

>>> ar1=np.arange(12).reshape((4, 3))
>>> ar1
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9, 10, 11]])
>>> ar1.ndim
2
>>> ar1=np.arange(27).reshape((3,3,3))
>>> ar1
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])

>>> ar1.ndim
3
>>> ar1[:]        # 0 维取全部
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])
>>> ar1[:,0]     # 获取每维数组的第一行
array([[ 0,  1,  2],
       [ 9, 10, 11],
       [18, 19, 20]])
>>> ar1[:,0,0]   # 获取每维数组的第一行的第一个元素
array([ 0,  9, 18])

# 认识数组的维度可以查看ar1.ndim ,也可以查看数组的'['层数

2.2、多维数组切片使用

2.2.1、获取列表中的元素
>>> ar1=np.arange(27).reshape((3,3,3))
>>> ar1
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])
>>> ar1[0]       # 获取数组的0维
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
>>> ar1[1]       # 获取数组的1维
array([[ 9, 10, 11],
       [12, 13, 14],
       [15, 16, 17]])
>>> ar1[2]       # 获取数组的2维
array([[18, 19, 20],
       [21, 22, 23],
       [24, 25, 26]])
>>> ar1[0,0]
array([0, 1, 2])
>>> ar1[0,0,1]
1
>>> ar1[1,2,1]
16
>>> ar1[1,0,0:2]
array([ 9, 10])
>>> ar1[1,0,-2]
10
>>> ar1[1,0,-2:]
array([10, 11])
2.2.2、数组逆序
>>> ar1=np.arange(27).reshape((3,3,3))
>>> ar1
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])
>>> ar1[1,0,::-1]       # 第2维逆序 
array([11, 10,  9])
>>> ar1[1,::-1]         # 第1 维逆序
array([[15, 16, 17],
       [12, 13, 14],
       [ 9, 10, 11]])
>>> ar1[::-1]           # 整个数组逆序
array([[[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]]])
>>> ar1[::-1,::-1]    # 第0、1维逆序
array([[[24, 25, 26],
        [21, 22, 23],
        [18, 19, 20]],

       [[15, 16, 17],
        [12, 13, 14],
        [ 9, 10, 11]],

       [[ 6,  7,  8],
        [ 3,  4,  5],
        [ 0,  1,  2]]])
>>> ar1[::-1,::-1,::-1]  # 第0、1和2维逆序
array([[[26, 25, 24],
        [23, 22, 21],
        [20, 19, 18]],

       [[17, 16, 15],
        [14, 13, 12],
        [11, 10,  9]],

       [[ 8,  7,  6],
        [ 5,  4,  3],
        [ 2,  1,  0]]])
>>> ar1[1,:,:]
array([[ 9, 10, 11],
       [12, 13, 14],
       [15, 16, 17]])
>>> ar1[1,...]     # 对于大于等于三维的数组,可以使用...来简化操作
array([[ 9, 10, 11],
       [12, 13, 14],
       [15, 16, 17]])

2.2.3、修改列表元素
>>> ar1[0,0,1]=999
>>> ar1
array([[[  0, 999,   2],
        [  3,   4,   5],
        [  6,   7,   8]],

       [[  9,  10,  11],
        [ 12,  13,  14],
        [ 15,  16,  17]],

       [[ 18,  19,  20],
        [ 21,  22,  23],
        [ 24,  25,  26]]])
>>> ar1[0,1]
array([3, 4, 5])
>>> ar1[0,1]=[123, 456, 789]
>>> ar1
array([[[  0, 999,   2],
        [123, 456, 789],
        [  6,   7,   8]],

       [[  9,  10,  11],
        [ 12,  13,  14],
        [ 15,  16,  17]],

       [[ 18,  19,  20],
        [ 21,  22,  23],
        [ 24,  25,  26]]])
2.2.4、插入新元素
多维数组空白处插入数据不生效
>>> ar1[0,0,:0]=[58]
>>> ar1[0,0]
array([0, 1, 2])
>>> ar1
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])
2.2.5、删除元素

多维数组无法直接删除,报错如下:

>>> ar1[0,1,2]=[]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: setting an array element with a sequence.
2.2.6、复制元素(浅拷贝)
>>> ar1
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])
>>> ar3=ar1[:]
>>> ar3
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])
>>> ar3 is ar1
False
>>> ar3=ar1
>>> ar3 is ar1
True
>>> import copy
>>> ar3=copy.copy(ar1)
>>> ar3
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])
>>> ar3 is ar1
False
>>> ar3=copy.deepcopy(ar1)
>>> ar3
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])
>>> ar3 is ar1
False

三、参考文档

1、https://blog.csdn.net/hlx20080808/article/details/127610664

2、http://coolpython.net/data_analysis/numpy/numpy-del-item.html

3、https://www.bbsmax.com/A/gAJGw4g1JZ/

4、https://blog.csdn.net/weixin_36670529/article/details/111307004文章来源地址https://www.toymoban.com/news/detail-418057.html

到了这里,关于Numpy 数组切片的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Python Numpy教程】切片和索引

    NumPy是Python中用于科学计算的重要库之一,它提供了多维数组对象和许多用于操作这些数组的函数。在本教程中,我们将探讨NumPy中的数组切片和索引,这是使用NumPy进行数据处理和分析时的关键概念。数组切片和索引使您能够访问、操作和修改NumPy数组的元素,对于数据处理

    2024年02月03日
    浏览(36)
  • NumPy--reshape、切片操作、copy函数

    ⛳reshape方法和flatten、ravel方法 reshape 用于改变数组的形状和维度 flatten 用于将多维数组展平为一维数组 。该方法返回一个新的一维数组,其中包含了原始数组中的所有元素,按照原始数组的元素顺序排列。 注意 reshape 方法返回的是一个新的数组对象,原始数组并没有被修改

    2024年02月16日
    浏览(40)
  • Java——一维数组和二维数组(主要详讲一维数组)

    目录 一维数组 创建,初始化,赋值 注意 一些数组的便捷使用方法 使用 .length得到数组长度 Arrays相关的使用 二维数组 文章某些地方会出现java与c语言的比较 文章内容参考韩顺平老师的课堂笔记 可以先创建再初始化,也可以创建的时候直接初始化。但是,如果选择先创建再

    2024年02月01日
    浏览(51)
  • 【python基础】复杂数据类型-列表类型(列表切片)

    视频讲解 前面学习的是如何处理列表的 所有数据元素 。Python还可以处理列表的部分元素,Python称之为切片。 创建切片,可指定要使用的第一个数据元素的索引和最后一个数据元素的索引。与range函数一样,Python在到达指定的第二个索引 前面的 数据元素后停止。比如要切片

    2024年02月07日
    浏览(52)
  • Python基础 - 将二维列表转换为一维

    在实验中经常会遇到将二维列表(数组)拉平到一维,如将 [[1, 1], [2, 2]] 转换为[1, 1, 2, 2],有以下几种操作方案: 1. 最简单的直接使用循环,如下: 2. 使用itertools.chain(*iterables),能够去除iterable里的内嵌的一层iterable【注意:只能去除一层,多的层数去除不了,具体实例可看下

    2024年02月06日
    浏览(37)
  • 5.一维数组与字符数组

    数组:指一组具有相同数据类型的数据的有序集合。 一维数组的定义格式为 类型说明符 数组名[常量表达式]; 常量表达式中可以包含常量和符号常量,但不能包含变量 可以只给一部分元素赋值,如int a[10]={0,1,2,3,4};后面的值会默认为0 在对全部数组元素赋初值时,由于数据的

    2024年02月12日
    浏览(39)
  • Python 列表切片详解

         切指–将某些东西切成小块。列表切片是从 原始列表中提取列表的一部分 的过程。在列表切片中,我们将根据所需内容(如,从何处开始,结束以及增量进行切片)剪切列表。      Python中符合序列的有序序列都支持切片(slice),例如列表,字符串,元组。  存储对

    2023年04月08日
    浏览(40)
  • 【PHP】二维数组转一维数组

    在 PHP 中,如果你想将一个二维数组转换为一维数组,你可以使用几种不同的方法。以下是一些常见的方法: array_column() 用于提取数组中的列,最为直接 array_map() 用于对数组中的每个元素应用回调函数,返回的是由回调函数的返回值组成的新数组。 以上任何一种方法都可以

    2024年02月04日
    浏览(65)
  • Python列表的索引和切片

    Python列表的索引和切片使用及语法如下: 列表索引: 使用方括号([])来访问列表中的元素。 索引从0开始,最左边的元素的索引为0,依次递增。 负数索引从最右边的元素开始,最右边的元素的索引为-1,依次递减。 示例: 列表切片: 使用冒号(:)进行切片操作。 切片操

    2024年02月10日
    浏览(36)
  • 【JavaSE】一维数组和二维数组详解

    欢迎关注个人主页:逸狼 创造不易,可以点点赞吗~ 如有错误,欢迎指出~ 目录 一维数组 基本语法 初始化 遍历和打印 数组是引用型变量 基本类型变量与引用类型变量的区别 null 数组传参和返回 总结 二维数组 基本语法 初始化 遍历和打印 数组:可以看成是相同类型元素的

    2024年04月09日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包