Elasticsearch:Combined fields 查询

这篇具有很好参考价值的文章主要介绍了Elasticsearch:Combined fields 查询。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

有时一个匹配项可以覆盖多个文本字段。 在这种情况下,你可以使用 combined_fields 查询来搜索多个文本字段,就好像它们的值实际上已被索引到一个组合字段中一样。 除此之外,combined_fields 的主要好处是强大且易于理解的评分算法。这种做法也有类似于 copy_to​​​​​​​ 的处理方法。

combined_fields 查询属于全文查询组,它允许你搜索已分析的文本字段(例如,错误消息)。

当字段映射中没有指定 search_analyzer 时,分析器将默认为索引时应用于该字段的分析器,并使用该分析器来处理查询字符串。 如果在字段映射中指定了 search_analyzer,则此分析器将是用于处理查询字符串的分析器。

分析器只是一个由三个更小的组件构建而成的组件:字符过滤器、标记器和标记过滤器,无论是内置的还是自定义的。 这些构建块被内置的分析器预先打包到各种语言和各种文本的分析器中。 Elasticsearch 还公开了各个构建块,允许将它们合并以创建新的自定义分析器。 你可以在此处阅读有关分析器的更多信息。

combined fields 查询支持搜索多个文本字段,就好像它们的内容已被索引到一个组合字段中一样。 该查询采用把输入字符串当做以 term 为中心的输入:首先它将查询字符串分析为单独的 term,然后在任何字段中查找每个词。 当匹配可能跨越多个文本字段(例如文章的 title、abstract 和 body)时,此查询特别有用。比如我们写入如下的一个文档:

PUT combined_index/_doc/1
{
  "title": "Elasticsearch database is very useful",
  "abstract": "This is a very popular system nowadays",
  "body": "Elasticsearch is today one of the most popular database systems available today. This Elasticsearch tutorial provides new users with the prerequisite knowledge and tools to start using Elasticsearch. It includes installation instructions, and initial indexing and data handling instructions."
}

我们可以使用如下的搜索来针对 tille, abstract 及 body 同时进行查询:

GET combined_index/_search?filter_path=**.hits
{
  "query": {
    "combined_fields": {
      "query": "database systems",
      "fields": ["title", "abstract", "body"],
      "operator": "and"
    }
  }
}

上面命令搜索返回的结果为:

{
  "hits": {
    "hits": [
      {
        "_index": "combined_index",
        "_id": "1",
        "_score": 0.6877647,
        "_ignored": [
          "body.keyword"
        ],
        "_source": {
          "title": "Elasticsearch database is very useful",
          "abstract": "This is a very popular system nowadays",
          "body": "Elasticsearch is today one of the most popular database systems available today. This Elasticsearch tutorial provides new users with the prerequisite knowledge and tools to start using Elasticsearch. It includes installation instructions, and initial indexing and data handling instructions."
        }
      }
    ]
  }
}

乍一看,是不是有点觉得像 mulit-match 查询的样子啊?这在我们下面来进行比较。

combined_fields 查询采用基于概率相关性框架:BM25 及以后中描述的简单 BM25F 公式的原则性评分方法。 在对匹配项进行评分时,查询会跨字段组合术语和集合统计信息来对每个匹配项进行评分,就好像指定字段已被索引到单个组合字段中一样。 这个得分是最好的尝试; combined_fields 做了一些近似,分数不会完全服从 BM25F 模型。

警告:字段数量限制。默认情况下,查询可以包含的子句数量是有限制的。 此限制由 indices.query.bool.max_clause_count 设置定义,默认为 4096。对于combined fileds 查询,子句数计算为字段数乘以术语数。

这个查询有什么用?

combined_fields 查询使你能够搜索多个文本字段,就好像它们的索引值已被索引到一个组合字段中一样。 combined_fields 查询在匹配可能涵盖多个文本字段时很方便。

combined_fields 查询通过采用以 term 为中心的查询视图来工作。 它将查询字符串分析为单个术语,然后在任何字段中搜索每个术语。 可以使用此查询代替跨字段 multi_match 查询。 它提供了更直接的行为和更强大的评分系统。 combined_fields 查询仅适用于具有完全相同的搜索分析器的字段,而 multi_match 查询不关心字段是否具有相同的搜索分析器。

字段分数加权

字段分数加权是 combined fields 模型而定的。 例如,如果标题 title 的提升为 2,则计算分数时就好像 title 中的每个术语在合成组合字段中出现了两次一样。

GET /_search
{
  "query": {
    "combined_fields" : {
      "query" : "distributed consensus",
      "fields" : [ "title^2", "body" ] 
    }
  }
}

如上所示,当我们想对 title 字段进行加权时,我们可以使用 ^ 符号来进行表述。

注意:combined_fields 查询要求字段提升大于或等于 1.0。 字段增强允许是浮点数,比如 2.2 等。

combined_fields 的参数


fields

       (必需,字符串数组)要搜索的字段列表。 允许字段通配符模式。 仅支持文本字段,并且它们必须都具有相同的搜索分析器。

query
        (必需,字符串)要在提供的 <fields> 中搜索的文本。

        combined_fields 查询在执行搜索之前分析提供的文本。

auto_generate_synonyms_phrase_query
        (可选,布尔值)如果为真,则会自动为 multi-term 同义词创建 match phrase 查询。默认为 true。

        有关系的例子,请参看 Use synonyms with match query。

Operator

        (可选,字符串)布尔逻辑,用于解释查询值中的文本。 有效值为:

                or(默认)
                        例如,database systems 的查询值被解释为 database OR systems
                and
                        例如,database systems 的查询值被解释为 database AND systems

minimum_should_match
        (可选,字符串)要返回的文档必须匹配的最小子句数。 有关有效值和更多信息,请参阅 minimum_should_match 参数。

zero_terms_query

        (可选,字符串)指示如果分析器删除所有分词时是否不返回任何文档,例如在使用 stop 过滤器时。 有效值为:

          none(默认)
                如果分析器删除所有分词,则不会返回任何文档。
         all
                返回所有文档,类似于 match_all 查询。
                有关示例,请参见 Zero terms query 。

和 multi-match 查询比较

combined_fields 查询提供了一种跨多个文本字段进行匹配和评分的原则性方法。 为了支持这一点,它要求所有字段都具有相同的搜索分析器

如你想要一个处理不同类型字段(如 keyword 或 numbers)的查询,那么 multi_match 查询可能更合适。 它支持文本和非文本字段,并接受不共享同一分析器的文本字段。

主要的 multi_match 模式 best_fields 和 most_fields 采用以字段为中心的查询视图。 相比之下,combined_fields 是以 term 为中心的:operator 和 minimum_should_match 应用于每个 term,而不是每个字段。 具体来说,像这样的查询:

GET /_search
{
  "query": {
    "combined_fields" : {
      "query":      "database systems",
      "fields":     [ "title", "abstract"],
      "operator":   "and"
    }
  }
}

被执行为:

+(combined("database", fields:["title" "abstract"]))
+(combined("systems", fields:["title", "abstract"]))

换句话说,每个术语必须出现在至少一个字段中才能匹配文档。

cross_fields multi_match 模式也采用以术语为中心的方法,并为每个术语应用 operator 和 minimum_should_match。 combined_fields 相对于 cross_fields 的主要优势是其基于 BM25F 算法的强大且可解释的评分方法。

注意:Custom similarities
combined_fields 查询目前只支持 BM25 相似度,这是默认的,除非配置了 Custom similarities。 Per-field similarities 也是不允许的。 在任何一种情况下使用 combined_fields 都会导致错误。文章来源地址https://www.toymoban.com/news/detail-418599.html

到了这里,关于Elasticsearch:Combined fields 查询的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Elasticsearch(十二)搜索---搜索匹配功能③--布尔查询及filter查询原理

    本节主要学习ES匹配查询中的布尔查询以及布尔查询中比较特殊的filter查询及其原理。 复合搜索,顾名思义是一种在一个搜索语句中包含一种或多种搜索子句的搜索。 布尔查询是常用的复合查询,它把多个子查询组合成一个布尔表达式,这些子查询之间的逻辑关系是\\\"与\\\",即

    2024年02月04日
    浏览(51)
  • Elasticsearch从入门到精通-05ES匹配查询

    👏作者简介:大家好,我是程序员行走的鱼 📖 本篇主要介绍和大家一块学习一下ES各种场景下的匹配查询,有助于我们在项目中进行综合使用 创建索引并指定ik分词器: 添加数据: 需要搜索的document中的remark字段包含java和developer词组 上述语法中,如果将operator的值改为or。则与

    2024年03月27日
    浏览(88)
  • Elasticsearch(十)搜索---搜索匹配功能①--查询所有文档和term级别查询

    之前的学习我们已经了解了搜索的辅助功能,从这一章开始就是ES真正核心的功能,搜索。针对不同的数据类型,ES提供了很多搜索匹配功能:既有进行完全匹配的term搜索,也有按照范围匹配的range搜索;既有进行分词匹配的match搜索,也有按照前缀匹配的suggesr搜索。我们同样

    2024年02月11日
    浏览(58)
  • Elasticsearch(十三)搜索---搜索匹配功能④--Constant Score查询、Function Score查询

    之前我们学习了布尔查询,知道了filter查询只在乎查询条件和文档的匹配程度,但不会根据匹配程度对文档进行打分,而对于must、should这两个布尔查询会对文档进行打分,那如果我想在查询的时候同时不去在乎文档的打分(对搜索结果的排序),只想过滤文本字段是否包含这

    2024年02月11日
    浏览(44)
  • Elasticsearch 查询革新:探索 Wildcard 类型的高效模糊匹配策略

    在生产使用中,Elasticsearch 除了精确匹配的要求,也会有模糊查询的场景。 面对这种问题 ,传统的解决方案有两种: 2.1 方案一:ngram 分词器 使用 ngram 分词器对存入的数据进行精细化的拆分,利用细颗粒度的 token 进行快速的召回。 这是一个利用空间换时间的方案,细化查询

    2024年02月04日
    浏览(40)
  • Springboot3.1+Elasticsearch8.x匹配查询

    springboot-starter3.1.0中spring-data-elasticsearch的版本为5.1.0,之前很多方法和类都找不到了。这里主要讲讲在5.1.0版本下如何使用spring data对elesticsearch8.x进行匹配查询。 第一步当然是配置依赖 在这里面,spring-boot-starter-data-elasticsearch是3.1.0的,里面的spring-data-elasticsearch是5.1.0的,服务

    2024年02月15日
    浏览(46)
  • elasticsearch 基于ik分词器的分词查询和模糊匹配

    前言:elasticsearch 查询有很多,查询的条件有固定格式,返回结果提示不明确,让ES使用起来有点不方便的感觉,ES查询方式很多,简单介绍几种使用点的,实用的 此处简单梳理一下最常用的查询 模糊匹配查询 类似 mysql 语法中的 like ‘%value%’ 类似于百度的分词查询 将

    2024年02月16日
    浏览(38)
  • ElasticSearch系列 - SpringBoot整合ES之全文搜索匹配查询 match

    官方文档地址:https://www.elastic.co/guide/en/elasticsearch/reference/index.html 权威指南:https://www.elastic.co/guide/cn/elasticsearch/guide/current/structured-search.html 1. 数据准备 官方测试数据下载地址:https://download.elastic.co/demos/kibana/gettingstarted/accounts.zip ,数据量很大,我们自己构造数据吧。 2. m

    2023年04月08日
    浏览(52)
  • Elasticsearch 基本使用(五)查询条件匹配方式(query & query_string)

    ES中常用的查询类型往大了分可以分为简单查询,复合查询,聚合查询等; 而复合查询及聚合查询都是基于简单查询的;简单查询里面对条件的匹配方式又分为不同类型。term[s],match,match_all,match_phrase 等等 term 单词查询,在字段的倒排索引(发生分词)或者直接在字段值(

    2024年02月09日
    浏览(45)
  • ElasticSearch系列 - SpringBoot整合ES:短语匹配查询 match_phrase

    1. ElasticSearch match_phrase查询是什么?它与match查询有什么区别? match_phrase查询是一种用于匹配短语的查询方式,可以用于精确匹配多个单词组成的短语。它会将查询字符串分解成单词,然后按照顺序匹配文档中的单词,只有当文档中的单词顺序与查询字符串中的单词顺序完全

    2024年02月12日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包