Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

这篇具有很好参考价值的文章主要介绍了Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

大家好,我是北山啦,好久不见,Nice to meet you,本文将记录学习Hadoop生态圈相关知识。

大数据时代

大数据是指无法在一定时间范围内通过常用软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

大数据时代的特征5V

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

应用场景,包括电商领域中的推荐以及金融方面中的个人信用评估,交通领域中拥堵预测,导航最优规划等等,https://beishan.blog.csdn.net/

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|YarnHadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
大数据场景下:海量数据如何存储以及海量数据如何计算?

这里涉及到分布式、集群的概念

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
海量数据如何存储以及海量数据如何计算

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

Hadoop

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

Hadoop概述

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

官网:https://hadoop.apache.org/

侠义上Hadoop指的是Apache软件基金会的一款开源软件

允许用户使用简单的编程模型实现跨机器集群对海量数据进行分布式计算处理

Hadoop核心组件
HDFS:分布式文件存储系统,解决海量数据存储
YARN:集群资源管理和任务调度框架,解决资源任务调度
MapReduce:分布式计算框架,解决海量计算
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

广义上Hadoop指的是围绕Hadoop打造的大数据生态圈

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

Hadoop特性优点

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

Hadoop国内外应用

Hadoop最先应用于国内外的互联网公司,外国的例如:Yahoo、Facebook、IBM。国内的例如:BAT以及华为

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
Hadoop的成功在于它的通用性以及简单

精确区分做说什么和怎么做,做什么属于业务问题,怎么做属于技术问题,用户负责业务,Hadoop负责技术

Hadoop发行版本

分为开源社区版以及商业发行版
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
开源社区版本:https://hadoop.apache.org/
商业发行版本:https://www.cloudera.com/products/open-source/apache-hadoop.html
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

截至目前,Hadoop以及发展到了3.x版本,Hadoop1.0时,包括HDFS(分布式文件存储)和MapReduce(资源管理和分布式数据处理),到2.0,将MapReduce(分布式数据处理)进行拆分,引入新的组件YARN(集群资源管理、任务调度)

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
Hadoop3.0架构组件和Hadoop2.0类似,3.0着重于性能优化

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

Hadoop集群整体概述

  • Hadoop集群包括两个集群:HDFS集群、YARN集群
  • 两个集群在逻辑上分离通常物理上在一起
  • 两个集群都是标准的主从架构集群

MapReduce是计算框架、代码层面的组件 没有集群之说

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

两个集群在逻辑上分离通常物理上在一起,可以从下图中理解
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
HDFS集群由一主(NN即NameNode)三从(DN即DataNode)+一个秘书(SNN即Secondary NameNode)构成

YARN集群由RM即Resource Manager和NM即Node Manager构成

Hadoop集群 = HDFS集群 + YARN集群

  • 逻辑上分离,指他们之间互相没有依赖
  • 物理上一起,指进程部署在同一台机器上

HDFS分布式文件系统

文件系统是一种存储和组织数据的方法,实现了数据的存储、分级组织、访问和获取等操作,使得用户对访问和查找变得容易,文件系统使用树形目录逻辑抽象代替了硬盘等物理设备使用数据块的概念,用户不需要关系数据底层存在硬盘哪里,只需记得这个文件所属的目录和文件名即可

传统常见的文件系统

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
海量数据存储遇到的困难:

  • 传统存储硬件通用性差,设备投资加上后期维修、升级扩容的成本非常高
  • 传统存储方式意味着:存储时存储,计算是计算,当需要处理数据的时候把数据移动过来
  • 性能低,单节点I/O性能瓶颈无法逾越,难以支持海量数据的高并发高吞吐
  • 可扩展性差

数据和元数据

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

HDFS核心属性
  • 分布式存储
  • 元数据记录
  • 分块存储
  • 副本机制

分布式存储

数据量大,单机存储遇到瓶颈,分布式存储通过横向扩展来解决数据存储问题
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

元数据记录

针对文件分布在不同机器上不利于寻找,元数据记录下文件机器存储位置信息,快速定位文件位置
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

分块存储

文件过大导致单机存放不下,上传下载效率低。通过文件分块存储在不同机器,针对块并行操作提高效率

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

副本机制

不同机器设置备份,冗余存储,保障数据安全
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
总结如下:
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

HDFS简介

  • HDFS(Hadoop Distributed File System),Hadoop分布式文件系统,是Apache Hadoop的核心组件之一,作为大数据生态圈最底层的分布式存储服务而存在,也可以说大数据首要解决的我呢提就是海量数据的存储问题
    Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
    Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

HDFS shell操作

HDFS Shell包含了各种的类Shell的命令,可以直接与Hadoop分布式文件系统以及其他文件系统进行交互,常用命令如下:
这里搬运的CSDN气质&末雨的总结,感谢感谢

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

Map Reduce

hadoop主键之MapReduce

分而治之思想、设计构思、官方示例、执行流程

分而治之

MapReduce的核心思想是:分而治之
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
将原问题拆分位若干个子问题,并对子问题进行求解,最后进行合并,得到原问题的解。

将原问题拆分位若干个小问题之后,可以并行处理,同时来计算。当然,如果无法拆分或者拆分后小问题之间存在着依赖关系,那就不能用分而治之的思想。

  1. 能不能拆分
  2. 是否存在依赖
    Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

举例:要数停车场中的所有停放车的总数量

Map:你数一列,我数一列…这就是Map阶段,人越多,能过够同时数车的人就越多,速度就越快。

Reudece:数完之后,聚在一起,把所有人的统计数加在一起,这就是Reduce合并汇总阶段

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

理解MapReduce思想

  • MapReduce的思想很好理解,关键在于如何基于这个思想设计出一款分布式计算程序
  • 后续讲解Hadoop团队针对MapReduce的设计构思
  1. 如何针对大数据处理场景

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

  1. 构建抽象编程模型

MapReduce借鉴了函数式语言中的思想,再用MapReduce两个函数提供了高层的并行编程抽象模型。

Map:对一组数据元素进行某种重复式的处理

Reduce:对Map的中间结果进行某种进一步的结果整理

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
MapReduce中定义了如下的Map和Reduce两个抽象的编程接口,由用户编程实现:
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
通过以上两个编程接口,大家可以看出MapReduce处理的数据类型是<key,value>键值对

  1. 统一架构、隐藏底层细节

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

分布式计算概念

  • 分布式计算是一种计算方法,和集中式计算是相对的
  • 随着计算机技术的发展,有些应用需要非常巨大的计算能力才能完成,如果采用集中式计算,需要耗费相当长的时间来完成
  • 分布式计算将改应用分解成许多小的部分,分配给堕胎计算机进行处理,这样可以节约整体计算时间,大大提高计算效率
    Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

MapReduce介绍

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

  1. Hadoop MapReduce是一个分布式计算框架,用于轻松编写分布式应用程序,这些应用程序以可靠,容错的方式并行处理大型硬件集群(数千个节点)上的大量数据(多TB数据集)
  2. Map Reduce是一种面向海量数据处理的一种指导思想,也是一种用于大规模数据进行分布式计算的编程模型

MapReduce产生背景

由Google于2004年的论文中《MapReduce:Simplified Data Processing on Large Cluster》中提出
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

MapReduce特点

易于编程:MapReduce提供了用于二次开发的接口,简单地实现一些接口,就可以完成一个分布式程序,任务计算交给计算框架去处理,将分布式程序部署到hadoop集群上运行,集群节点可以扩展到成百上千

良好的扩展性:当计算机资源不能得到满足的时候,可以通过增加机器来扩展计算能力,基于MapReduce的分布式计算的特点可以随节点数目增长保持近乎于线性的增长,这也是MapReduce处理海量数据的关键,通过将计算节点增至几百或几千就可以很容易地处理数TB甚至数PB的离线数据

高容错性:Hadoop集群式分布式搭建和部署的,任何一个机器节点宕机了,它可以把上面的计算任务转移到另一个节点上运行,不影响整个作业任务的完成,过程完全是Hadoop内部完成的

适合海量数据的离线处理:可以处理GB、TB和PB级别的数据量

MapReduce局限性

MapReduce虽然有很多优势,也有相对的局限性,局限性不代表不能做,而是在某些场景下实现效果比较差,不适合MapReduce来处

实时计算性能差:MapReduce主要应用于离线作业,无法做到秒级的数据相应

不能进行流式计算:流式计算特点是数据源源不断地计算,并且数据是动态的,而MapReduce作为一个离线计算框架,主要是针对静态数据集的,数据是不能动态变化的

MapReduce实例进程

一个完整的MapReduce程序在分布式运行时有三类

  • MRAppMaster:负责整个MR程序的过程调度以及状态协调
  • MapTask:负责map姐u单的整个数据处理流程
  • ReduceTask:负责reduce阶段的整个数据处理流程

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

MapReduce阶段组成

  • 一个MapReduce编程模型中只包含一个Map阶段和Reduce阶段,或者只有Map阶段
  • 不能有诸多个map阶段,多个reduce阶段的出现
  • 如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序串行运行
    Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

MapReduce数据类型

  • 在整个MapReduce程序中,数据都是以kv键值对的形式流转的
  • 在实际编程解决各种业务问题中,需要考虑每个阶段的输入输出kv是什么
  • MapReduce内置了很多默认属性,比如排序,分组等,都和数据的k相关,所以说kv的类型数据确定是极其重要的
    Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

MapReduce官方示例

概述:
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
实例说明:
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

计算圆周率Π的值

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

WordCount词频统计

  • WordCount算是大数据计算领域经典的入门案例,相当于hello world
  • 通过WordCount,可以感受背后MapReduce的执行流程和默认的行为机制

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

WordCount编程实现思路

  • map阶段核心:把输入的数据进行切割,全部标记,因此输出就是<单词,1>

  • shuffle阶段核心:经过MR程序内部自带默认的排序分组等功能,把key相同的单词会作为一组数据构成新的kv对

  • reduce阶段核心:处理shuffle完成的一组数据,该组数据就是该代词所有的键值对,对所有的1进行累计求和,就是单词的总数

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
Word程序提交
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

Map阶段执行流程

依托WordCount程序
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
MapReduce整体执行流程图

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
Map阶段执行过程
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

Reduce阶段执行流程

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
Reduce阶段执行过程
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

Shuffle机制

  • Shuffle的本意是洗牌的意思,把一组有规则地数据尽量打乱成无规则的数据
  • 在MR中,Shuffle更像是洗牌的逆过程,指的是将map端的无规则输出按指定的规则‘打乱’成具有一定规则的数据,以便reduce端接收处理
  • 一般吧从Map产生输出开始到Reduce得到数据作为输入之前的操作称作shuffle
    Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

Map端的shuffle

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

Reduce端的shuffle

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

shuffle机制弊端

  • Shuffle是MapReduce程序的核心和精髓
  • Shuffle也是MapReduce被诟病最多的地方,MapReduce相比较于Spark、Flink计算引擎慢的原因,根Shuffle机制有很大的关系
  • Shuffle中频繁涉及数据在内存,磁盘之间的多次往复

YARN

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

介绍、架构组件、程序提交交互流程、调度器

YARN介绍

  • Apache Hadoop Yarn(Yet Another Resource Negotiatot,另一种资源协调者)是一种新的Hadoop资源管理器
  • YARN是一个通用资源管理系统调度平台,可为上层应用提供统一的资源管理和调度
  • 它的引入为集群在利用率、资源同意管理和数据共享等方面带来了巨大好处

YANR是一个通用资源管理系统调度平台

YARN功能说明

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

YARN概述

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

YARN架构、组件

YARN官方架构图
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

程序提交YARN交互流程

  1. MR作业提交,Client → RM
  2. 资源的申请 MrAppMaster → RM
  3. MR作业状态汇报 Container(Map|Reduce task) → Container(MrAppMaster)
  4. 节点的状态汇报 NM→ RM

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

YARN资源调度器Scheduler

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

如何理解资源调度

  • 在理想的情况下,应用程序提出的请求将以及得到YARN的批准,但在实际中,资源是有限的,并且在繁忙的集群中,应用程序通常将需要等待其后写请求得到满足。YARN调度程序的工作是根据一些定义的策略为应用程序分配资源
  • 在YARN中,负责给应用分配资源的就是Scheduler,他是ResourceManager的核心组件之一,Scheduler完全专用于调度作业,他无法跟踪应用程序的状态
  • 一般而言,调度是一个难题,并且没有一个最佳的策略,为此,YARN提供了多种调度器和配置的策略供选择

调度器策略

根据需求,选择合适的调度器

  • FIFO Schedule
  • Capacity Schedule
  • Fair Schedule
    Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
  1. FIFO Scheduler
    Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
  2. Capacity Schedule
    Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
    Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

  1. Fair Schedule
    Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
    Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn
    Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn

https://beishan.blog.csdn.net/,我是北山啦,欢迎评论交流文章来源地址https://www.toymoban.com/news/detail-418717.html

到了这里,关于Hadoop 生态圈及核心组件简介Hadoop|MapRedece|Yarn的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于Hadoop生态的相关框架与组件的搭建

    目录 一、前言 安装包 二、linux配置 1、配置网络参数 2、永久关闭防火墙 3、添加IP地址配置映射表 4、SSH免密登录设置 5、配置时间同步 三、准备工作 四、jdk安装 五、Zookeeper集群部署 1、Zookeeper集群启动脚本编写  六、Hadoop高可用集群部署 1、安装配置  2、修改配置文件 (

    2023年04月19日
    浏览(37)
  • Hadoop核心组件及组件介绍

    1、Hadoop通用组件 -  Hadoop Common 包含了其他hadoop模块要用到的库文件和工具 2、分布式文件系统 - Hadoop Distributed File System (HDFS) 运行于通用硬件上的分布式文件系统,高吞吐,高可靠 3、资源管理组件 - Hadoop YARN 于2012年引入的组件,用于管理集群中的计算资源并在这些资源上

    2024年02月05日
    浏览(50)
  • 分布式计算框架Hadoop核心组件

    Hadoop作为成熟的分布式计算框架在大数据生态领域已经使用多年,本文简要介绍Hadoop的核心组件MapReduce、YARN和HDFS,以加深了解。 1、Hadoop基本介绍 Hadoop是分布式计算框架,主要解决海量数据的存储和计算问题。Hadoop主要组件包括分布式文件系统HDFS、分布式离线并行计算框架

    2024年02月06日
    浏览(44)
  • Hadoop学习笔记(HDP)-Part.02 核心组件原理

    目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger Part.14 安装YARN+MR Part.15 安装HIVE Part.16 安装HBase

    2024年02月04日
    浏览(41)
  • Hadoop的第二个核心组件:MapReduce框架第二节

    1、客户端在执行MR程序时,客户端先根据设置的InputFormat实现类去对输入的数据文件进行切片(getSplits),如果没有设置InputFormat实现类,MR程序会使用默认的实现类(TextInputFormat–FileInputFormat的子类)进行切片规划,生成一个切片规划文件 2、客户端的切片规划文件生成以后

    2024年02月09日
    浏览(41)
  • Hadoop的第二个核心组件:MapReduce框架第一节

    Hadoop解决了大数据面临的两个核心问题:海量数据的存储问题、海量数据的计算问题 其中MapReduce就是专门设计用来解决海量数据计算问题的,同时MapReduce和HDFS不一样的地方在于,虽然两者均为分布式组件,但是HDFS是一个完善的软件,我们只需要使用即可,不需要去进行任何

    2024年02月09日
    浏览(34)
  • Hadoop的第二个核心组件:MapReduce框架第四节

    MapReduce可以对海量数据进行计算,但是有些情况下,计算的结果可能来自于多个文件,每个文件的数据格式是不一致,但是多个文件存在某种关联关系,类似于MySQL中外键关系,如果想计算这样的结果,MR程序也是支持的。这种计算我们称之为join计算。 MR的join根据join数据的位

    2024年02月09日
    浏览(61)
  • Hadoop的第二个核心组件:MapReduce框架第三节

    InputFormat阶段 :两个作用 负责对输入的数据进行切片,切片的数据和Mapper阶段的MapTask的数量是相对应的。 负责MapTask读取切片数据时,如何将切片的数据转换成为Key-value类型的数据,包括key-value的数据类型的定义。 Mapper阶段 作用处理每一个切片数据的计算逻辑。 map方法的执

    2024年02月09日
    浏览(47)
  • Kubernetes(K8s)的核心组件简介

    Kubernetes(简称 K8s)是一个开源的,用于自动化部署、扩展和管理容器化应用程序的平台。在这篇文章中,我们将深入研究 Kubernetes 的核心组件及其功能。 一、Master 组件 1. API Server:Kubernetes 的主要管理组件。所有的管理任务都是通过 API Server 进行的。它是 Kubernetes 的前端,

    2024年02月15日
    浏览(47)
  • Spring MVC简介及核心组件和调用流程理解

    Spring Web MVC是基于Servlet API构建的原始Web框架,从一开始就包含在Spring Framework中。正式名称“Spring Web MVC”来自其源模块的名称( spring-webmvc ),但它通常被称为“Spring MVC”。 在控制层框架历经Strust、WebWork、Strust2等诸多产品的历代更迭之后,目前业界普遍选择了SpringMVC作为

    2024年03月16日
    浏览(58)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包