深入分析Linux网络丢包

这篇具有很好参考价值的文章主要介绍了深入分析Linux网络丢包。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、背景:

深入分析Linux网络丢包
从图中你可以看出,可能发生丢包的位置,实际上贯穿了整个网络协议栈。换句话说,全程都有丢包的可能。

  • 在两台 VM 连接之间,可能会发生传输失败的错误,比如网络拥塞、线路错误等;
  • 在网卡收包后,环形缓冲区可能会因为溢出而丢包;
  • 在链路层,可能会因为网络帧校验失败、QoS 等而丢包;
  • 在 IP 层,可能会因为路由失败、组包大小超过 MTU 等而丢包;
  • 在传输层,可能会因为端口未监听、资源占用超过内核限制等而丢包;
  • 在套接字层,可能会因为套接字缓冲区溢出而丢包;
  • 在应用层,可能会因为应用程序异常而丢包;
  • 此外,如果配置了 iptables 规则,这些网络包也可能因为 iptables过滤规则而丢包

2、链路层

当链路层由于缓冲区溢出等原因导致网卡丢包时,Linux 会在网卡收发数据的统计信息中记录下收发错误的次数。可以通过 ethtool 或者 netstat ,来查看网卡的丢包记录。

netstat -i
 
Kernel Interface table
Iface      MTU    RX-OK RX-ERR RX-DRP RX-OVR    TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0       100       31      0      0 0             8      0      0      0 BMRU
lo       65536        0      0      0 0             0      0      

RX-OK、RX-ERR、RX-DRP、RX-OVR ,分别表示

  • 接收时的总包数
  • 总错误数
  • 进入 Ring Buffer 后因其他原因(如内存不足)导致的丢包数
  • Ring Buffer 溢出导致的丢包数。

TX-OK、TX-ERR、TX-DRP、TX-OVR 也代表类似的含义,只不过是指发送时对应的各个指标。

这里我们没有发现任何错误,说明虚拟网卡没有丢包。不过要注意,如果用 tc 等工具配置了 QoS,那么 tc 规则导致的丢包,就不会包含在网卡的统计信息中。所以接下来,我们还要检查一下 eth0 上是否配置了 tc 规则,并查看有没有丢包。添加 -s 选项,以输出统计信息:

tc用于Linux内核的流量控制
tc -s qdisc show dev eth0
 
qdisc netem 800d: root refcnt 2 limit 1000 loss 30%
 Sent 432 bytes 8 pkt (dropped 4, overlimits 0 requeues 0)
 backlog 0b 0p requeues 0

可以看到, eth0 上配置了一个网络模拟排队规则(qdisc netem),并且配置了丢包率为 30%(loss 30%)。再看后面的统计信息,发送了 8 个包,但是丢了 4个。看来应该就是这里导致 Nginx 回复的响应包被 netem 模块给丢了。

既然发现了问题,解决方法也很简单,直接删掉 netem 模块就可以了。执行下面的命令,删除 tc 中的 netem 模块:

tc qdisc del dev eth0 root netem loss 30%

删除后,重新执行之前的 hping3 命令,看看现在还有没有问题:

hping3 -c 10 -S -p 80 192.168.0.30
 
HPING 192.168.0.30 (eth0 192.168.0.30): S set, 40 headers + 0 data bytes
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=0 win=5120 rtt=7.9 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=2 win=5120 rtt=1003.8 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=5 win=5120 rtt=7.6 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=6 win=5120 rtt=7.4 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=9 win=5120 rtt=3.0 ms
 
--- 192.168.0.30 hping statistic ---
10 packets transmitted, 5 packets received, 50% packet loss
round-trip min/avg/max = 3.0/205.9/1003.8 ms

不幸的是,从 hping3 的输出中可以看到还是 50% 的丢包,RTT 的波动也仍旧很大,从 3ms 到 1s。显然,问题还是没解决,丢包还在继续发生。不过,既然链路层已经排查完了,我们就继续向上层分析,看看网络层和传输层有没有问题。

3、网络层和传输层

在网络层和传输层中,引发丢包的因素非常多。不过,其实想确认是否丢包,是非常简单的事,因为 Linux 已经为我们提供了各个协议的收发汇总情况。执行 netstat -s 命令,可以看到协议的收发汇总,以及错误信息:

netstat -s
#输出
Ip:
    Forwarding: 1          //开启转发
    31 total packets received    //总收包数
    0 forwarded            //转发包数
    0 incoming packets discarded  //接收丢包数
    25 incoming packets delivered  //接收的数据包数
    15 requests sent out      //发出的数据包数
Icmp:
    0 ICMP messages received    //收到的ICMP包数
    0 input ICMP message failed    //收到ICMP失败数
    ICMP input histogram:
    0 ICMP messages sent      //ICMP发送数
    0 ICMP messages failed      //ICMP失败数
    ICMP output histogram:
Tcp:
    0 active connection openings  //主动连接数
    0 passive connection openings  //被动连接数
    11 failed connection attempts  //失败连接尝试数
    0 connection resets received  //接收的连接重置数
    0 connections established    //建立连接数
    25 segments received      //已接收报文数
    21 segments sent out      //已发送报文数
    4 segments retransmitted    //重传报文数
    0 bad segments received      //错误报文数
    0 resets sent          //发出的连接重置数
Udp:
    0 packets received
    ...
TcpExt:
    11 resets received for embryonic SYN_RECV sockets  //半连接重置数
    0 packet headers predicted
    TCPTimeouts: 7    //超时数
    TCPSynRetrans: 4  //SYN重传数
  ...

etstat 汇总了 IP、ICMP、TCP、UDP 等各种协议的收发统计信息。不过,我们的目的是排查丢包问题,所以这里主要观察的是错误数、丢包数以及重传数。可以看到,只有 TCP 协议发生了丢包和重传,分别是:

  • 11 次连接失败重试(11 failed connection attempts)
  • 4 次重传(4 segments retransmitted)
  • 11 次半连接重置(11 resets received for embryonic SYN_RECV sockets)
  • 4 次 SYN 重传(TCPSynRetrans)
  • 7 次超时(TCPTimeouts)

这个结果告诉我们,TCP 协议有多次超时和失败重试,并且主要错误是半连接重置。换句话说,主要的失败,都是三次握手失败。不过,虽然在这儿看到了这么多失败,但具体失败的根源还是无法确定。所以,我们还需要继续顺着协议栈来分析。接下来的几层又该如何分析呢?

4、iptables

首先,除了网络层和传输层的各种协议,iptables 和内核的连接跟踪机制也可能会导致丢包。所以,这也是发生丢包问题时我们必须要排查的一个因素。

先来看看连接跟踪,要确认是不是连接跟踪导致的问题,只需要对比当前的连接跟踪数和最大连接跟踪数即可。

# 主机终端中查询内核配置
$ sysctl net.netfilter.nf_conntrack_max
net.netfilter.nf_conntrack_max = 262144
$ sysctl net.netfilter.nf_conntrack_count
net.netfilter.nf_conntrack_count = 182

可以看到,连接跟踪数只有 182,而最大连接跟踪数则是 262144。显然,这里的丢包,不可能是连接跟踪导致的。

接着,再来看 iptables。回顾一下 iptables 的原理,它基于 Netfilter 框架,通过一系列的规则,对网络数据包进行过滤(如防火墙)和修改(如 NAT)。这些 iptables 规则,统一管理在一系列的表中,包括 filter、nat、mangle(用于修改分组数据) 和 raw(用于原始数据包)等。而每张表又可以包括一系列的链,用于对 iptables 规则进行分组管理。

对于丢包问题来说,最大的可能就是被 filter 表中的规则给丢弃了。要弄清楚这一点,就需要我们确认,那些目标为 DROP 和 REJECT 等会弃包的规则,有没有被执行到。可以直接查询 DROP 和 REJECT 等规则的统计信息,看看是否为0。如果不是 0 ,再把相关的规则拎出来进行分析。

iptables -t filter -nvL
#输出
Chain INPUT (policy ACCEPT 25 packets, 1000 bytes)
 pkts bytes target     prot opt in     out     source               destination
    6   240 DROP       all  --  *      *       0.0.0.0/0            0.0.0.0/0            statistic mode random probability 0.29999999981
 
Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target     prot opt in     out     source               destination
 
Chain OUTPUT (policy ACCEPT 15 packets, 660 bytes)
 pkts bytes target     prot opt in     out     source               destination
    6   264 DROP       all  --  *      *       0.0.0.0/0 

从 iptables 的输出中,你可以看到,两条 DROP 规则的统计数值不是 0,它们分别在INPUT 和 OUTPUT 链中。这两条规则实际上是一样的,指的是使用 statistic 模块,进行随机 30% 的丢包。0.0.0.0/0 表示匹配所有的源 IP 和目的 IP,也就是会对所有包都进行随机 30% 的丢包。看起来,这应该就是导致部分丢包的“罪魁祸首”了。

执行下面的两条 iptables 命令,删除这两条 DROP 规则。

root@nginx:/# iptables -t filter -D INPUT -m statistic --mode random --probability 0.30 -j DROP
root@nginx:/# iptables -t filter -D OUTPUT -m statistic --mode random --probability 0.30 -j DROP

再次执行刚才的 hping3 命令,看看现在是否正常

#输出
HPING 192.168.0.30 (eth0 192.168.0.30): S set, 40 headers + 0 data bytes
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=0 win=5120 rtt=11.9 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=1 win=5120 rtt=7.8 ms
...
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=9 win=5120 rtt=15.0 ms
 
--- 192.168.0.30 hping statistic ---
10 packets transmitted, 10 packets received, 0% packet loss
round-trip min/avg/max = 3.3/7.9/15.0 ms

不过,到目前为止,我们一直使用的 hping3 工具,只能验证案例 Nginx 的 80 端口处于正常监听状态,却还没有访问 Nginx 的 HTTP 服务。所以,不要匆忙下结论结束这次优化,我们还需要进一步确认,Nginx 能不能正常响应 HTTP 请求。我们继续在终端二中,执行如下的 curl 命令,检查 Nginx 对 HTTP 请求的响应:

$ curl --max-time 3 http://192.168.0.30
curl: (28) Operation timed out after 3000 milliseconds with 0 bytes received

奇怪,hping3 的结果显示Nginx 的 80 端口是正常状态,为什么还是不能正常响应 HTTP 请求呢?别忘了,我们还有个大杀器——抓包操作。看来有必要抓包看看了。

5、tcpdump

执行下面的 tcpdump 命令,抓取 80 端口的包

tcpdump -i eth0 -nn port 80
#输出
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262

然后,切换到终端二中,再次执行前面的 curl 命令:
深入分析Linux网络丢包
wireshark flow graph
深入分析Linux网络丢包

可以重新执行 netstat -i 命令,确认一下网卡有没有丢包问题:

netstat -i
 
Kernel Interface table
Iface      MTU    RX-OK RX-ERR RX-DRP RX-OVR    TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0       100      157      0    344 0            94      0      0      0 BMRU
lo       65536        0      0      0 0             0      0    

从 netstat 的输出中,你可以看到,接收丢包数(RX-DRP)是 344,果然是在网卡接收时丢包了。不过问题也来了,为什么刚才用 hping3 时不丢包,现在换成 GET 就收不到了呢?还是那句话,遇到搞不懂的现象,不妨先去查查工具和方法的原理。我们可以对比一下这两个工具:

  • hping3 实际上只发送了 SYN 包;
  • curl 在发送 SYN 包后,还会发送 HTTP GET 请求。HTTP GET本质上也是一个 TCP 包,但跟 SYN 包相比,它还携带了 HTTP GET 的数据。

通过这个对比,你应该想到了,这可能是 MTU 配置错误导致的。为什么呢?

其实,仔细观察上面 netstat 的输出界面,第二列正是每个网卡的 MTU 值。eth0 的 MTU只有 100,而以太网的 MTU 默认值是 1500,这个 100 就显得太小了。当然,MTU 问题是很好解决的,把它改成 1500 就可以了。

ifconfig eth0 mtu 1500文章来源地址https://www.toymoban.com/news/detail-418733.html

修改完成后,再切换到终端二中,再次执行 curl 命令,确认问题是否真的解决了:

curl --max-time 3 http://192.168.0.30/
#输出
<!DOCTYPE html>
<html>
...
<p><em>Thank you for using nginx.</em></p>
</body>
</html>
非常不容易呀,这次终于看到了熟悉的 Nginx 响应,说明丢包的问题终于彻底解决了。

到了这里,关于深入分析Linux网络丢包的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 为什么深度优先搜索可以判定简单图中是否有环,而宽度优先搜索不行?

    1,首先可以肯定的是,对于无向图而言,宽搜和深搜都能判断是否有环。 简要说明一下,假如一个无向图有环,那么在宽搜的过程中,能搜到已经访问过的结点。如果一个无向图没有环(参考无向树),那么它的宽度优先搜索过程中,是不会访问到已访问过的结点的。 对于

    2024年02月14日
    浏览(44)
  • 性能测试分析案例-定位服务器丢包

    预先安装 docker、curl、hping3 等工具,如 apt install docker.io curl hping3。 案例是一个 Nginx 应用,如下图所示,hping3 和 curl 是 Nginx 的客户端。 在终端一中执行下面的命令,启动 Nginx 应用,并在 80 端口监听。如果一切正常,你应该可以看到如下的输出: 执行 docker ps 命令,查询容

    2024年02月01日
    浏览(37)
  • Elasticsearch模拟网络丢包

    Elasticsearch一旦遇到网络抖动就可能节点(单个或者多个)掉出集群。从而集群出现red/yellow状态,理论情况下ES会自愈,但某些情况下可能非预期,此时就需要我们模拟各种case了,比如网络丢包。 1. 进入ES pod获取虚拟网卡信息 获取到的虚拟网卡的编号为 64; 2. 进入宿主机,

    2024年03月25日
    浏览(82)
  • UDP主要丢包原因及具体问题分析

    一、主要丢包原因 1、接收端处理时间过长导致丢包:调用recv方法接收端收到数据后,处理数据花了一些时间,处理完后再次调用recv方法,在这二次调用间隔里,发过来的包可能丢失。对于这种情况可以修改接收端,将包接收后存入一个缓冲区,然后迅速返回继续recv。 2、发

    2024年02月03日
    浏览(35)
  • 网络性能的四大指标:带宽、时延、抖动、丢包

    衡量网络性能的四大指标:带宽、时延、抖动、丢包;通常我们讲一个网络快不快,好不好是一种非常感性的概念,可以用这四大指标对一个网络进行定量的精准描述。 带宽的定义:在单位时间内从网络中的某一点到另一点所能通过的“最高数据率”。通常用每秒多少比特来

    2024年02月11日
    浏览(33)
  • 网络编程之网络丢包故障如何定位?如何解决?

    本期分享一个比较常见的网络问题--丢包。例如我们去ping一个网站,如果能ping通,且网站返回信息全面,则说明与网站服务器的通信是畅通的,如果ping不通,或者网站返回的信息不全等,则很可能是数据被丢包了,类似情况想必大家都不陌生。针对网络丢包,本人提供一些

    2024年02月05日
    浏览(33)
  • Linux丢包问题排查思路

    判断问题与网络丢包有关 通过抓tcpdump,通过wireshark提示查看数据包状态。比如客户端重传多次失败,服务端提示丢包等错误,均是可能由于丢包导致的异常。 丢包可能存在的位置 网络丢包在交互过程中的每一个环节都有可能出现。主要环节如下: 两端服务器:主要表现在

    2024年02月15日
    浏览(32)
  • 【管理运筹学】第 7 章 | 图与网络分析(1,图论背景以及基本概念、术语、矩阵表示)

    【管理运筹学】第 7 章 | 图与网络分析(2,最小支撑树问题) 【管理运筹学】第 7 章 | 图与网络分析(3,最短路问题) 【管理运筹学】第 7 章 | 图与网络分析(4,最大流问题) 【管理运筹学】第 7 章 | 图与网络分析(5,最小费用流问题及最小费用最大流问题) 按照正常

    2024年02月09日
    浏览(34)
  • 虚拟网络设备与网络安全:深入分析与实践应用

    在数字化时代📲,网络安全🔒成为了企业和个人防御体系中不可或缺的一部分。随着网络攻击的日益复杂和频繁🔥,传统的物理网络安全措施已经无法满足快速发展的需求。虚拟网络设备🖧,作为网络架构中的重要组成部分,通过提供灵活的配置和强大的隔离能力🛡️,

    2024年04月10日
    浏览(50)
  • Linux 深入理解Linux文件系统与日志分析

    文件数据 包含 元信息(即不包含文件名的文件属性)    和    实际数据 文件元信息存储在 inode(索引节点)里, 文件实际数据存储在 block(块)里; 文件名存储在目录块里 stat  文件名   stat  文件名      ls -i 文件名   df -i Linux系统不使用 文件名 识别文件,而 使用 inode号 来识

    2024年04月25日
    浏览(30)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包