第01章_数据库概述

这篇具有很好参考价值的文章主要介绍了第01章_数据库概述。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

第01章_数据库概述

1. 为什么要使用数据库

  • 持久化(persistence)把数据保存到可掉电式存储设备中以供之后使用。大多数情况下,特别是企业级应用,数据持久化意味着将内存中的数据保存到硬盘上加以固化,而持久化的实现过程大多通过各种关系数据库来完成。
  • 持久化的主要作用是将内存中的数据存储在关系型数据库中,当然也可以存储在磁盘文件、XML据文件中。

第01章_数据库概述

生活中的例子:
第01章_数据库概述

2. 数据库与数据库管理系统

2.1 数据库的相关概念

DB:数据库(Database
即存储数据的仓库,其本质是一个文件系统。它保存了一系列有组织的数据。
DBMS:数据库管理系统(Database Management System
是一种操纵和管理数据库的大型软件,用于建立、使用和维护数据库,对数据库进行统一管理和控
制。用户通过数据库管理系统访问数据库中表内的数据。
SQL:结构化查询语言(Structured Query Language
专门用来与数据库通信的语言。

2.2 数据库与数据库管理系统的关系

数据库管理系统 (DBMS) 可以管理多个数据库,一般开发人员会针对每一个应用创建一个数据库。为保存应用中实体的数据,一般会在数据库创建多个表,以保存程序中实体用户的数据。
数据库管理系统、数据库和表的关系如图所示:
第01章_数据库概述

 第01章_数据库概述

2.3 常见的数据库管理系统排名(DBMS)

目前互联网上常见的数据库管理软件有 Oracle MySQL MS SQL Server DB2 PostgreSQL Access 、Sybase、 Informix 这几种。以下是 2021 DB-Engines Ranking 对各数据库受欢迎程度进行调查后的统计结果:(查看数据库最新排名: https://db-engines.com/en/ranking
第01章_数据库概述
。。。
第01章_数据库概述
对应的走势图:( https://db-engines.com/en/ranking_trend
第01章_数据库概述

2.4 常见的数据库介绍

Oracle
1979 年, Oracle 2 诞生,它是第一个商用的 RDBMS (关系型数据库管理系统)。随着 Oracle 软件的名气越来越大,公司也改名叫 Oracle 公司。
2007 年,总计 85 亿美金收购 BEA Systems
2009 年,总计 74 亿美金收购 SUN 。此前的 2008 年, SUN 10 亿美金收购 MySQL 。意味着 Oracle 同时拥有了MySQL 的管理权,至此 Oracle 在数据库领域中成为绝对的领导者。
2013 年,甲骨文超越 IBM ,成为继 Microsoft 后全球第二大软件公司。
如今 Oracle 的年收入达到了 400 亿美金,足以证明商用(收费)数据库软件的价值。
SQL Server
SQL Server 是微软开发的大型商业数据库,诞生于 1989 年。 C# .net 等语言常使用,与 WinNT 完全集成,也可以很好地与Microsoft BackOffice 产品集成。
DB2
IBM 公司的数据库产品 , 收费的。常应用在银行系统中。
PostgreSQL
PostgreSQL 的稳定性极强,最符合 SQL 标准,开放源码,具备商业级 DBMS 质量。 PG 对数据量大的文本以及SQL 处理较快。
SyBase
已经淡出历史舞台。提供了一个非常专业数据建模的工具 PowerDesigner
SQLite
嵌入式的小型数据库,应用在手机端。 零配置, SQlite3 不用安装,不用配置,不用启动,关闭或者配置数据库实例。当系统崩溃后不用做任何恢复操作,再下次使用数据库的时候自动恢复。
informix
IBM 公司出品,取自 Information Unix 的结合,它是第一个被移植到 Linux 上的商业数据库产品。仅运行于unix/linux 平台,命令行操作。 性能较高,支持集群,适应于安全性要求极高的系统,尤其是银行,证券系统的应用。

3. MySQL介绍

第01章_数据库概述

3.1 概述

  • MySQL是一个 开放源代码的关系型数据库管理系统 ,由瑞典MySQL AB(创始人Michael Widenius)公1995年开发,迅速成为开源数据库的 No.1
  • 2008Sun 收购(10亿美金),2009SunOracle 收购。 MariaDB 应运而生。(MySQL 的创造者担心 MySQL 有闭源的风险,因此创建了 MySQL 的分支项目 MariaDB
  • MySQL6.x 版本之后分为 社区版 商业版
  • MySQL是一种关联数据库管理系统,将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性。
  • MySQL是开源的,所以你不需要支付额外的费用。
  • MySQL是可以定制的,采用了 GPLGNU General Public License协议,你可以修改源码来开发自己的MySQL系统。
  • MySQL支持大型的数据库。可以处理拥有上千万条记录的大型数据库。
  • MySQL支持大型数据库,支持5000万条记录的数据仓库,32位系统表文件最大可支持 4GB 64位系统支持最大的表文件为 8TB
  • MySQL使用 标准的SQL数据语言 形式。
  • MySQL可以允许运行于多个系统上,并且支持多种语言。这些编程语言包括CC++PythonJavaPerlPHPRuby等。

3.2 MySQL发展史重大事件

MySQL 的历史就是整个互联网的发展史。互联网业务从社交领域、电商领域到金融领域的发展,推动着应用对数据库的需求提升,对传统的数据库服务能力提出了挑战。高并发、高性能、高可用、轻资源、易维护、易扩展的需求,促进了MySQL 的长足发展。
第01章_数据库概述

1.4 关于MySQL 8.0

MySQL 5.7 版本直接跳跃发布了 8.0 版本 ,可见这是一个令人兴奋的里程碑版本。 MySQL 8 版本在功能上做了显著的改进与增强,开发者对MySQL 的源代码进行了重构,最突出的一点是多 MySQL Optimizer 优化器进行了改进。不仅在速度上得到了改善,还为用户带来了更好的性能和更棒的体验。

1.5 Why choose MySQL?

第01章_数据库概述

为什么如此多的厂商要选用 MySQL ?大概总结的原因主要有以下几点:
1. 开放源代码,使用成本低。
2. 性能卓越,服务稳定。
3. 软件体积小,使用简单,并且易于维护。
4. 历史悠久,社区用户非常活跃,遇到问题可以寻求帮助。
5. 许多互联网公司在用,经过了时间的验证。

1.6 Oracle vs MySQL

Oracle 更适合大型跨国企业的使用,因为他们对费用不敏感,但是对性能要求以及安全性有更高的要求。
MySQL 由于其 体积小、速度快、总体拥有成本低,可处理上千万条记录的大型数据库,尤其是开放源码 这一特点,使得很多互联网公司、中小型网站选择了 MySQL 作为网站数据库 (Facebook, Twitter ,YouTube,阿里巴巴 / 蚂蚁金服,去哪儿,美团外卖,腾讯)。

4. RDBMS 与 非RDBMS

从排名中我们能看出来,关系型数据库绝对是 DBMS 的主流,其中使用最多的 DBMS 分别是 Oracle 、MySQL 和 SQL Server 。这些都是关系型数据库(RDBMS)。

4.1 关系型数据库(RDBMS)

4.1.1 实质

  • 这种类型的数据库是 最古老 的数据库类型,关系型数据库模型是把复杂的数据结构归结为简单的二元关系 (即二维表格形式)。

第01章_数据库概述

  • 关系型数据库以 (row) (column) 的形式存储数据,以便于用户理解。这一系列的行和列被称为 (table) ,一组表组成了一个库(database)
  • 表与表之间的数据记录有关系(relationship)。现实世界中的各种实体以及实体之间的各种联系均用关系模型 来表示。关系型数据库,就是建立在 关系模型 基础上的数据库。
  • SQL 就是关系型数据库的查询语言。

4.1.2 优势

  • 复杂查询 可以用SQL语句方便的在一个表以及多个表之间做非常复杂的数据查询。
  • 事务支持 使得对于安全性能很高的数据访问要求得以实现。

4.2 非关系型数据库(非RDBMS)

4.2.1 介绍

非关系型数据库 ,可看成传统关系型数据库的功能 阉割版本 ,基于键值对存储数据,不需要经过 SQL 层的解析, 性能非常高 。同时,通过减少不常用的功能,进一步提高性能。
目前基本上大部分主流的非关系型数据库都是免费的。

4.2.2 有哪些非关系型数据库

相比于 SQL NoSQL 泛指非关系型数据库,包括了榜单上的键值型数据库、文档型数据库、搜索引擎和列存储等,除此以外还包括图形数据库。也只有用 NoSQL 一词才能将这些技术囊括进来。
键值型数据库
键值型数据库通过 Key-Value 键值的方式来存储数据,其中 Key Value 可以是简单的对象,也可以是复杂的对象。Key 作为唯一的标识符,优点是查找速度快,在这方面明显优于关系型数据库,缺点是无法像关系型数据库一样使用条件过滤(比如 WHERE ),如果你不知道去哪里找数据,就要遍历所有的键,这就会消耗大量的计算。
键值型数据库典型的使用场景是作为 内存缓存 Redis 是最流行的键值型数据库。
第01章_数据库概述
文档型数据库
此类数据库可存放并获取文档,可以是 XML JSON 等格式。在数据库中文档作为处理信息的基本单位,一个文档就相当于一条记录。文档数据库所存放的文档,就相当于键值数据库所存放的“ MongoDB是最流行的文档型数据库。此外,还有CouchDB 等。
搜索引擎数据库
虽然关系型数据库采用了索引提升检索效率,但是针对全文索引效率却较低。搜索引擎数据库是应用在搜索引擎领域的数据存储形式,由于搜索引擎会爬取大量的数据,并以特定的格式进行存储,这样在检索的时候才能保证性能最优。核心原理是“ 倒排索引
典型产品: Solr Elasticsearch Splunk 等。
列式数据库
列式数据库是相对于行式存储的数据库, Oracle MySQL SQL Server 等数据库都是采用的行式存储(Row-based),而列式数据库是将数据按照列存储到数据库中,这样做的好处是可以大量降低系统的I/O,适合于分布式文件系统,不足在于功能相对有限。典型产品: HBase 等。
第01章_数据库概述
图形数据库
图形数据库,利用了图这种数据结构存储了实体(对象)之间的关系。图形数据库最典型的例子就是社交网络中人与人的关系,数据模型主要是以节点和边(关系)来实现,特点在于能高效地解决复杂的关系问题。
图形数据库顾名思义,就是一种存储图形关系的数据库。它利用了图这种数据结构存储了实体(对象)之间的关系。关系型数据用于存储明确关系的数据,但对于复杂关系的数据存储却有些力不从心。如社交网络中人物之间的关系,如果用关系型数据库则非常复杂,用图形数据库将非常简单。典型产品:Neo4J、 InfoGrid 等。
第01章_数据库概述

4.2.3 NoSQL的演变

由于 SQL 一直称霸 DBMS ,因此许多人在思考是否有一种数据库技术能远离 SQL ,于是 NoSQL 诞生了,但是随着发展却发现越来越离不开 SQL 。到目前为止 NoSQL 阵营中的 DBMS 都会有实现类似 SQL 的功能。下面是“NoSQL” 这个名词在不同时期的诠释,从这些释义的变化中可以看出 NoSQL 功能的演变
1970 NoSQL = We have no SQL
1980 NoSQL = Know SQL
2000 NoSQL = No SQL!
2005 NoSQL = Not only SQL
2013 NoSQL = No, SQL!
NoSQL SQL 做出了很好的补充,比如实际开发中,有很多业务需求,其实并不需要完整的关系型数据库功能,非关系型数据库的功能就足够使用了。这种情况下,使用 性能更高 成本更低 的非关系型数据库当然是更明智的选择。比如:日志收集、排行榜、定时器等。

4.3 小结

NoSQL 的分类很多,即便如此,在 DBMS 排名中,还是 SQL 阵营的比重更大,影响力前 5 DBMS 中有4 个是关系型数据库,而排名前 20 DBMS 中也有 12 个是关系型数据库。所以说,掌握 SQL 是非常有必要的。整套课程将围绕 SQL 展开。

5. 关系型数据库设计规则

  • 关系型数据库的典型数据结构就是 数据表 ,这些数据表的组成都是结构化的(Structured)。
  • 将数据放到表中,表再放到库中。
  • 一个数据库中可以有多个表,每个表都有一个名字,用来标识自己。表名具有唯一性。
  • 表具有一些特性,这些特性定义了数据在表中如何存储,类似JavaPython的设计。

5.1 表、记录、字段

  • E-R(entity-relationship,实体-联系)模型中有三个主要概念是: 实体集 属性 联系集
  • 一个实体集(class)对应于数据库中的一个表(table),一个实体(instance)则对应于数据库表中的一行(row),也称为一条记录(record)。一个属性(attribute)对应于数据库表中的一列(column),也称为一个字段(field)。
第01章_数据库概述

 ORM思想 (Object Relational Mapping)体现:

数据库中的一个表 <---> Java Python 中的一个类
表中的一条数据 <---> 类中的一个对象(或实体)
表中的一个列 <----> 类中的一个字段、属性 (field)

5.2 表的关联关系

  • 表与表之间的数据记录有关系(relationship)。现实世界中的各种实体以及实体之间的各种联系均用关系模型来表示。
  • 四种:一对一关联、一对多关联、多对多关联、自我引用

5.2.1 一对一关联(one-to-one

  • 在实际的开发中应用不多,因为一对一可以创建成一张表。
  • 举例:设计 学生表 :学号、姓名、手机号码、班级、系别、身份证号码、家庭住址、籍贯、紧急联系人、...
    • 拆为两个表:两个表的记录是一一对应关系。
    • 基础信息表 (常用信息):学号、姓名、手机号码、班级、系别
    • 档案信息表 (不常用信息):学号、身份证号码、家庭住址、籍贯、紧急联系人、...
  • 两种建表原则:
    • 外键唯一:主表的主键和从表的外键(唯一),形成主外键关系,外键唯一。
    • 外键是主键:主表的主键和从表的主键,形成主外键关系。

第01章_数据库概述

 5.2.2 一对多关系(one-to-many

  • 常见实例场景: 客户表和订单表 分类表和商品表 部门表和员工表
  • 举例:
    • 员工表:编号、姓名、...、所属部门
    • 部门表:编号、名称、简介
  • 一对多建表原则:在从表(多方)创建一个字段,字段作为外键指向主表(一方)的主键
第01章_数据库概述

第01章_数据库概述

 第01章_数据库概述

5.2.3 多对多(many-to-many

要表示多对多关系,必须创建第三个表,该表通常称为 联接表 ,它将多对多关系划分为两个一对多关系。将这两个表的主键都插入到第三个表中。
第01章_数据库概述
  • 举例1:学生-课程
    • 学生信息表 :一行代表一个学生的信息(学号、姓名、手机号码、班级、系别...
    • 课程信息表 :一行代表一个课程的信息(课程编号、授课老师、简介...
    • 选课信息表 :一个学生可以选多门课,一门课可以被多个学生选择
学号 课程编号
1 1001
2 1001
1 1002
  • 举例2:产品-订单
订单 表和 产品 表有一种多对多的关系,这种关系是通过与 订单明细 表建立两个一对多关系来
定义的。一个订单可以有多个产品,每个产品可以出现在多个订单中。
  • 产品表 产品表中的每条记录表示一个产品。
  • 订单表 订单表中的每条记录表示一个订单。
  • 订单明细表 :每个产品可以与订单表中的多条记录对应,即出现在多个订单中。一个订单 可以与产品表中的多条记录对应,即包含多个产品。

第01章_数据库概述

  • 举例3:用户-角色
  • 多对多关系建表原则:需要创建第三张表,中间表中至少两个字段,这两个字段分别作为外键指向各自一方的主键。

第01章_数据库概述文章来源地址https://www.toymoban.com/news/detail-418757.html

5.3.4 自我引用(Self reference)

第01章_数据库概述

到了这里,关于第01章_数据库概述的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Facebook 用户量十分庞大,为什么还使用 MySQL 数据库?

    当谈到社交媒体巨头Facebook时,我们立刻想到的是其庞大的用户基础和每日海量的数据流。然而,您可能会惊讶地发现,尽管面对如此巨大的规模,Facebook 仍然选择使用 MySQL 数据库作为其核心的数据存储和管理系统。 为什么Facebook没有选择其他更强大或更高级的数据库系统?

    2024年02月04日
    浏览(50)
  • 为什么mysql使用的是B+树而nosql类型的数据库大多数使用的是LSM树

    MySQL和LSM Tree(一种基于日志的存储引擎)都是关系型数据库,但它们在数据结构的选择上有所不同。 MySQL使用B+树作为其默认的索引结构,因为B+树在某些方面比LSM树更适合作为默认的索引结构。B+树的查询和更新速度相对较快,而且它的写入操作通常是基于内存的。这意味着

    2024年02月06日
    浏览(103)
  • Redis的速度不够用?为什么你应该考虑使用 KeyDB,一个更快、更强大、更灵活的开源数据库

    你是否正在使用 Redis 作为您的数据结构存储,享受它的高性能、高可用的特性?如果是这样,那么你可能会对 KeyDB 感兴趣。 KeyDB 一个由 Snap 提供支持、专为扩展而构建的开源数据库。它是 Redis 的高性能分支,专注于多线程、内存效率和高吞吐量。KeyDB 采用 MVCC 体系

    2024年02月08日
    浏览(71)
  • 为什么要学MySQL数据库,它有什么用?

    随着互联网技术的高速发展,预计2020 年底全世界网民的数量将达到 50 亿。网民数量的增加带动了网上购物、微博,网络视频等产业的发展。那么,随之而来的就是庞大的网络数据量。 大量的数据正在不断产生,那么如何安全有效地存储、检索,管理它们呢?于是对数据的有

    2024年02月15日
    浏览(48)
  • 说说为什么要做数据库拆分

    单体项目在构建之初,数据库的负载和数据量都不大,所以不需要对数据库做拆分,小型财务系统、文书系统、ERP系统、OA系统,用一个MySQL数据库实例基本就够用了。 就像《淘宝技术这十年》里面说到的,电商业务的数据量增长飞快,所以最开始的PHP+MySQL的架构已经不能满

    2024年02月08日
    浏览(53)
  • 数据库三大范式是什么,又为什么要反范式?

    🏆作者简介,黑夜开发者,CSDN领军人物,全栈领域优质创作者✌,CSDN博客专家,阿里云社区专家博主,2023年6月CSDN上海赛道top4。 🏆数年电商行业从业经验,历任核心研发工程师,项目技术负责人。 🏆本文已收录于PHP专栏:MySQL的100个知识点。 🎉欢迎 👍点赞✍评论⭐收

    2024年02月11日
    浏览(48)
  • 公司为什么选择云数据库?它的魅力到底是什么!

    亚马逊云科技提供了100余种产品免费套餐。其中,计算资源Amazon EC2首年12个月免费,750小时/月;存储资源 Amazon S3 首年12个月免费,5GB标准存储容量;数据库资源 Amazon RDS 首年12个月免费,750小时;Amazon Dynamo DB 25GB存储容量 永久免费。) 谈到数据库想必我们都不陌生,其中主流

    2024年02月04日
    浏览(56)
  • Elasticsearch:什么是向量和向量存储数据库,我们为什么关心?

    Elasticsearch 从 7.3 版本开始支持向量搜索。从 8.0 开始支持带有 HNSW 的 ANN 向量搜索。目前 Elasticsearch 已经是全球下载量最多的向量数据库。它允许使用密集向量和向量比较来搜索文档。 向量搜索在人工智能和机器学习领域有许多重要的应用。 有效存储和检索向量的数据库对于

    2024年02月08日
    浏览(53)
  • 为什么说PostgreSQL是面向对象的数据库?

    PostgreSQL 官方宣称它是世界上最先进的开源对象-关系型数据库管理系统(ORDBMS)。相信大家对于关系型数据库并不陌生,它基于关系模型(由行和列组成的二维表),定义了完整性约束并且使用 SQL 作为操作语言。 不过今天我们的主题不是关系模型,而是 PostgreSQL 提供的面向

    2024年03月25日
    浏览(73)
  • 为什么数据库要允许没有主键的表存在

    在数据库设计中,主键是一个关键概念,用于唯一标识数据库表中的每一行数据。然而,有时候数据库允许没有主键的表存在的情况,这可能会引起一些争议和疑问。本文将探讨为什么数据库允许没有主键的表以及相关的考虑因素。 主键在数据库中具有以下作用: 唯一标识

    2024年02月08日
    浏览(68)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包