分布式唯一ID生成算法——雪花算法(SnowFlake)

这篇具有很好参考价值的文章主要介绍了分布式唯一ID生成算法——雪花算法(SnowFlake)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

SnowFlake算法

据国家大气研究中心的查尔斯·奈特称,一般的雪花大约由10^19个水分子组成。在雪花形成过程中,会形成不同的结构分支,所以说大自然中不存在两片完全一样的雪花,每一片雪花都拥有自己漂亮独特的形状。雪花算法表示生成的id如雪花般独一无二。
snowflake是Twitter开源的分布式ID生成算法,结果是一个long型的ID。其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的流水号(意味着每个节点在每毫秒可以产生 4096 个 ID),最后还有一个符号位,永远是0。

核心思想:分布式,唯一。

算法具体介绍

雪花算法是 64 位 的二进制,一共包含了四部分:

  • 1位是符号位,也就是最高位,始终是0,没有任何意义,因为要是唯一计算机二进制补码中就是负数,0才是正数。
  • 41位是时间戳,具体到毫秒,41位的二进制可以使用69年,因为时间理论上永恒递增,所以根据这个排序是可以的。
  • 10位是机器标识,可以全部用作机器ID,也可以用来标识机房ID + 机器ID,10位最多可以表示1024台机器。
  • 12位是计数序列号,也就是同一台机器上同一时间,理论上还可以同时生成不同的ID,12位的序列号能够区分出4096个ID。

分布式唯一ID生成算法——雪花算法(SnowFlake)

优化

由于41位是时间戳,我们的时间计算是从1970年开始的,只能使用69年,为了不浪费,其实我们可以用时间的相对值,也就是以项目开始的时间为基准时间,往后可以使用69年。获取唯一ID的服务,对处理速度要求比较高,所以我们全部使用位运算以及位移操作,获取当前时间可以使用System.currentTimeMillis()

时间回拨问题

在获取时间的时候,可能会出现时间回拨的问题,什么是时间回拨问题呢?就是服务器上的时间突然倒退到之前的时间。

  1. 人为原因,把系统环境的时间改了。
  2. 有时候不同的机器上需要同步时间,可能不同机器之间存在误差,那么可能会出现时间回拨问题。
解决方案
  1. 回拨时间小的时候,不生成 ID,循环等待到时间点到达。
  2. 上面的方案只适合时钟回拨较小的,如果间隔过大,阻塞等待,肯定是不可取的,因此要么超过一定大小的回拨直接报错,拒绝服务,或者有一种方案是利用拓展位,回拨之后在拓展位上加1就可以了,这样ID依然可以保持唯一。但是这个要求我们提前预留出位数,要么从机器id中,要么从序列号中,腾出一定的位,在时间回拨的时候,这个位置 +1

由于时间回拨导致的生产重复的ID的问题,其实百度和美团都有自己的解决方案了,有兴趣可以去看看,下面不是它们官网文档的信息:

  • 百度UIDGenerator:https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md

    • UidGenerator是Java实现的, 基于Snowflake算法的唯一ID生成器。UidGenerator以组件形式工作在应用项目中, 支持自定义workerId位数和初始化策略, 从而适用于docker等虚拟化环境下实例自动重启、漂移等场景。 在实现上, UidGenerator通过借用未来时间来解决sequence天然存在的并发限制; 采用RingBuffer来缓存已生成的UID, 并行化UID的生产和消费, 同时对CacheLine补齐,避免了由RingBuffer带来的硬件级「伪共享」问题. 最终单机QPS可达600万。
  • 美团Leaf: https://tech.meituan.com/2019/03/07/open-source-project-leaf.html

    • leaf-segment 方案
      • 优化:双buffer + 预分配
      • 容灾:Mysql DB 一主两从,异地机房,半同步方式
      • 缺点:如果用segment号段式方案:id是递增,可计算的,不适用于订单ID生成场景,比如竞对在两天中午12点分别下单,通过订单id号相减就能大致计算出公司一天的订单量,这个是不能忍受的。
  • leaf-snowflake方案

    • 使用Zookeeper持久顺序节点的特性自动对snowflake节点配置workerID
      • 1.启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)。
      • 2.如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务。
      • 3.如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务。
  • 缓存workerID,减少第三方组件的依赖
  • 由于强依赖时钟,对时间的要求比较敏感,在机器工作时NTP同步也会造成秒级别的回退,建议可以直接关闭NTP同步。要么在时钟回拨的时候直接不提供服务直接返回ERROR_CODE,等时钟追上即可。或者做一层重试,然后上报报警系统,更或者是发现有时钟回拨之后自动摘除本身节点并报警
代码展示
public class SnowFlake {

    // 数据中心(机房) id
    private long datacenterId;
    // 机器ID
    private long workerId;
    // 同一时间的序列
    private long sequence;

    public SnowFlake(long workerId, long datacenterId) {
        this(workerId, datacenterId, 0);
    }

    public SnowFlake(long workerId, long datacenterId, long sequence) {
        // 合法判断
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
                timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);

        this.workerId = workerId;
        this.datacenterId = datacenterId;
        this.sequence = sequence;
    }

    // 开始时间戳(2022-12-12 12:08:01)
    private long twepoch = 1634393012000L;

    // 机房号,的ID所占的位数 5个bit 最大:11111(2进制)--> 31(10进制)
    private long datacenterIdBits = 5L;

    // 机器ID所占的位数 5个bit 最大:11111(2进制)--> 31(10进制)
    private long workerIdBits = 5L;

    // 5 bit最多只能有31个数字,就是说机器id最多只能是32以内
    private long maxWorkerId = -1L ^ (-1L << workerIdBits);

    // 5 bit最多只能有31个数字,机房id最多只能是32以内
    private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

    // 同一时间的序列所占的位数 12个bit 111111111111 = 4095  最多就是同一毫秒生成4096个
    private long sequenceBits = 12L;

    // workerId的偏移量
    private long workerIdShift = sequenceBits;

    // datacenterId的偏移量
    private long datacenterIdShift = sequenceBits + workerIdBits;

    // timestampLeft的偏移量
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

    // 序列号掩码 4095 (0b111111111111=0xfff=4095)
    // 用于序号的与运算,保证序号最大值在0-4095之间
    private long sequenceMask = -1L ^ (-1L << sequenceBits);

    // 最近一次时间戳
    private long lastTimestamp = -1L;


    // 获取机器ID
    public long getWorkerId() {
        return workerId;
    }


    // 获取机房ID
    public long getDatacenterId() {
        return datacenterId;
    }


    // 获取最新一次获取的时间戳
    public long getLastTimestamp() {
        return lastTimestamp;
    }


    // 获取下一个随机的ID
    public synchronized long nextId() {
        // 获取当前时间戳,单位毫秒
        long timestamp = timeGen();

        if (timestamp < lastTimestamp) {
            System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds",
                    lastTimestamp - timestamp));
        }

        // 去重
        if (lastTimestamp == timestamp) {

            sequence = (sequence + 1) & sequenceMask;

            // sequence序列大于4095
            if (sequence == 0) {
                // 调用到下一个时间戳的方法
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            // 如果是当前时间的第一次获取,那么就置为0
            sequence = 0;
        }

        // 记录上一次的时间戳
        lastTimestamp = timestamp;

        // 偏移计算
        return ((timestamp - twepoch) << timestampLeftShift) |
                (datacenterId << datacenterIdShift) |
                (workerId << workerIdShift) |
                sequence;
    }

    private long tilNextMillis(long lastTimestamp) {
        // 获取最新时间戳
        long timestamp = timeGen();
        // 如果发现最新的时间戳小于或者等于序列号已经超4095的那个时间戳
        while (timestamp <= lastTimestamp) {
            // 不符合则继续
            timestamp = timeGen();
        }
        return timestamp;
    }

    private long timeGen() {
        return System.currentTimeMillis();
    }

    public static void main(String[] args) {
        SnowFlake worker = new SnowFlake(1, 1);
        long timer = System.currentTimeMillis();
        for (int i = 0; i < 10000; i++) {
            worker.nextId();
        }
        System.out.println(System.currentTimeMillis());
        System.out.println(System.currentTimeMillis() - timer);
    }

}
问题分析
1. 第一位为什么不使用?

在计算机的表示中,第一位是符号位,0表示整数,第一位如果是1则表示负数,我们用的ID默认就是正数,所以默认就是0,那么这一位默认就没有意义。

2.机器位怎么用?

机器位或者机房位,一共10 bit,如果全部表示机器,那么可以表示1024台机器,如果拆分,5 bit 表示机房,5bit表示机房里面的机器,那么可以有32个机房,每个机房可以用32台机器。

3. twepoch表示什么?

由于时间戳只能用69年,我们的计时又是从1970年开始的,所以这个twepoch表示从项目开始的时间,用生成ID的时间减去twepoch作为时间戳,可以使用更久。

4. -1L ^ (-1L << x) 表示什么?

表示 x 位二进制可以表示多少个数值,假设x为3:

在计算机中,第一位是符号位,负数的反码是除了符号位,1变0,0变1, 而补码则是反码+1:

-1L 原码:1000 0001
-1L 反码:1111 1110
-1L 补码:1111 1111
从上面的结果可以知道,-1L其实在二进制里面其实就是全部为1,那么 -1L 左移动 3位,其实得到1111 1000,也就是最后3位是0,再与-1L异或计算之后,其实得到的,就是后面3位全是1。-1L ^ (-1L << x) 表示的其实就是x位全是1的值,也就是x位的二进制能表示的最大数值。

5.时间戳比较

在获取时间戳小于上一次获取的时间戳的时候,不能生成ID,而是继续循环,直到生成可用的ID,这里没有使用拓展位防止时钟回拨。

6.前端直接使用发生精度丢失

如果前端直接使用服务端生成的long 类型 id,会发生精度丢失的问题,因为 JS 中Number是16位的(指的是十进制的数字),而雪花算法计算出来最长的数字是19位的,这个时候需要用 String 作为中间转换,输出到前端即可。

♚焕蓝·未来 观点

雪花算法其实是依赖于时间的一致性的,如果时间回拨,就可能有问题,一般使用拓展位解决。而只能使用69年这个时间限制,其实可以根据自己的需要,把时间戳的位数设置得更多一点,比如42位可以用139年,但是很多公司首先得活下来。当然雪花算法也不是银弹,它也有缺点,在单机上递增,而多台机器只是大致递增趋势,并不是严格递增的。

没有最好的设计方案,只有合适和不合适的方案。

=========================================================

后记

分布式唯一ID生成算法——雪花算法(SnowFlake)

好啦,以上就是本期全部内容,能看到这里的人呀,都是能人

十年修得同船渡,大家一起点关注。

我是♚焕蓝·未来,感谢各位【能人】的:点赞收藏评论,我们下期见!

各位能人们的支持就是♚焕蓝·未来前进的巨大动力~

注:如果本篇Blog有任何错误和建议,欢迎能人们留言!文章来源地址https://www.toymoban.com/news/detail-418929.html

到了这里,关于分布式唯一ID生成算法——雪花算法(SnowFlake)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 关于分布式唯一ID的思考-雪花算法及美团Leaf方案详解

    首先,我们看一下日常开发中常见的雪花算法工具类: 引入hutool 工具类 代码所涉及的具体含义,会在下文中逐一分析,那么这么一个看似复杂的雪花算法背后,是否还有着鲜为人知的问题呢,为什么美团会基于最基础的雪花算法开发自己的Leaf解决方案呢,那让我们带着疑惑

    2023年04月17日
    浏览(42)
  • 分布式ID生成算法——雪花算法

    一、分布式ID ID可以唯一标识一条记录。 对于单体架构,我们可以使用自增ID来保证ID的唯一性。但是,在分布式系统中,简单的使用自增ID就会导致ID冲突。这也就引出了 分布式ID 问题。分布式ID也要求满足分布式系统的 高性能、高可用、高并发 的特点。 二、雪花算法 世界

    2024年02月06日
    浏览(47)
  • 分布式ID生成算法:雪花算法

    雪花算法(Snowflake)是一种分布式ID生成算法,可以生成唯一的、有序的、不重复的ID号,广泛应用于分布式系统中。其生成的ID号由64位二进制数组成,可以转换成16进制或10进制的字符串表示。 雪花算法的核心思想是将一个64位的二进制数分成四部分,分别表示时间戳、数据

    2024年02月15日
    浏览(37)
  • 分布式—雪花算法生成ID

    由64个Bit(比特)位组成的long类型的数字 0 | 0000000000 0000000000 0000000000 000000000 | 00000 | 00000 | 000000000000 1个bit:符号位,始终为0。 41个bit:时间戳,精确到毫秒级别,可以使用69年。 10个bit:工作机器ID,可以部署在1024个节点上。 12个bit:序列号,每个节点每毫秒内最多可以生成

    2024年02月11日
    浏览(42)
  • 分布式ID(2):雪花算法生成ID

    1 雪花算法简介 这种方案大致来说是一种以划分命名空间(UUID也算,由于比较常见,所以单独分析)来生成ID的一种算法,这种方案把64-bit分别划分成多段,分开来标示机器、时间等,比如在snowflake中的64-bit分别表示如下图(图片来自网络)所示: 41-bit的时间可以表示(1L

    2024年01月20日
    浏览(45)
  • 雪花算法生成分布式主键ID

    直接上代码,复制即可使用 在这个示例中,你可以通过 SnowflakeIdGenerator.init(dataCenterId, workerId); 初始化数据中心 ID 和工作 ID,然后通过 SnowflakeIdGenerator.generateId(); 静态方法生成 Snowflake ID 的字符串形式。

    2024年02月22日
    浏览(48)
  • 【Java笔记】分布式id生成-雪花算法

    随着业务的增长,有些表可能要占用很大的物理存储空间,为了解决该问题,后期使用数据库分片技术。将一个数据库进行拆分,通过数据库中间件连接。如果数据库中该表选用ID自增策略,则可能产生重复的ID,此时应该使用分布式ID生成策略来生成ID。 snowflake是Twitter开源的

    2024年02月11日
    浏览(42)
  • 【智能排班系统】雪花算法生成分布式ID

    在复杂而庞大的分布式系统中,确保数据实体的唯一标识性是一项至关重要的任务,生成全局唯一且有序的ID生成机制成为必不可少的环节。雪花算法(Snowflake Algorithm)正是为此目的而生,以其简洁的设计、高效的表现与良好的扩展性赢得了业界的广泛认可。 雪花算法最早由

    2024年04月10日
    浏览(82)
  • 雪花算法,在分布式环境下实现高效的ID生成

    其实雪花算法比较简单,可能称不上什么算法,就是一种构造UID的方法。 点1:UID是一个long类型的41位时间戳,10位存储机器码,12位存储序列号。 点2:时间戳的单位是毫秒,可以同时链接1024台机器,每台机器每毫秒可以使用4096个序列号,我们会给生成id上一个同步锁,阻塞

    2024年02月15日
    浏览(54)
  • 对于现有的分布式id发号器的思考 id生成器 雪花算法 uuid

    目录 雪花id tinyid uuid 分布式id特点 业务编号 数据中心编号 当前时间 ip地址 当前序号 对于时钟回拨问题 发号器机器当期时间小于redis的时间 解决步骤 发号器机器当期时间等于redis时间 发号器机器当期时间大于redis最大的时间(相关的key不存在) 分布式id的单次获取和批次获

    2024年02月13日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包