玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象

这篇具有很好参考价值的文章主要介绍了玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文进一步对数据集进行探索,对数据进行清洗、整理、验证。
最后建立Dataset对象,以便进行后续的训练工作。
本文所用代码: 我的Github

数据整理

我们最终的目的是建立Dataset对象,所以我们的目标应该是整理出 数据+标签 的组合。
在目标检测任务中,数据即我们的CT图片(读取自dcm文件);标签即我们的xml文件,内含 Bounding Box框 + 类别标签。
所以我们的目标是对所有可配对的 dcm文件xml文件 进行一一对应,剩下读取则是一件简单的工作。

整理出所有的dcm文件

dcm文件和xml文件对应的方法在上一节中已经阐释。
现在需要将数据集中所有的 dcm文件 和 对应的SOP Instance UID(后通称UID)整理出来,一共有25万条记录。


import pydicom
import matplotlib.pyplot as plt
import os
from tqdm import tqdm
import pandas as pd
import numpy as np

# 查看整个数据集下所有的dcm文件名
dcm_file=[]
for root, dirs, files in os.walk('manifest-1608669183333/Lung-PET-CT-Dx'):
    for file in files:
        file_path = os.path.join(root, file)
        if 'dcm' in file_path:
            dcm_file.append(file_path)
print(dcm_file[0])
len(dcm_file)

玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象


导入DataFrame后,获取对应的UID。
由于有25w张图片,我在固态硬盘上跑这段代码耗时约50min,跑完后保存为csv,下次就不用再跑一遍了。

df_dcm = pd.DataFrame(dcm_file)
# 建立新列uid,获取dcm文件对应的 SOPInstanceUID 号,这步耗时50min左右
df_dcm['uid'] = df_dcm[0].apply(lambda x: pydicom.dcmread(x).SOPInstanceUID)
df_dcm['uid_str'] = df_dcm['uid'].apply(lambda x: str(x))
df_dcm.to_csv('dcm_file_uid.csv')

# 上面一步耗时较久,如果已经读取过一遍并已保存,这里直接读取
df_dcm = pd.read_csv('dcm_file_uid.csv', index_col=0)
df_dcm

玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象


简单检查一下dcm文件是否独一无二。
玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象

整理出所有的xml标注文件

我们再把所有的xml文件整理出来,附上对应的UID。
玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象


玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象

整理数据①——舍弃错误的标注文件

我们先检查一下3万多个xml文件对应的UID是否都对应在df_dcm中。

# 检查Annotation目录下所有的uid文件名是否都在df_dcm中
xml_file_df = xml_file_df.loc[xml_file_df['uid_str'].isin(df_dcm['uid_str'])]
xml_file_df

# 我们发现 30884 < 31562

玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象
结果我们发现并不是所有的xml都有对应原图片,这应该属于这个数据集的标注错误问题,有可能标注文件的对应UID写错了。
总之,我们不能将这些xml文件纳入训练,所以将这些找不到对应图片的标注文件舍弃掉。

整理数据②——两个标注文件指向同一个目标图片的情况

我们查看一下XML标注文件是否有重复的文件名。

# 查看Annotation目录下的XML文件是否有重复的文件名
len(xml_file_df[0].unique()) == len(xml_file_df['uid_str'].unique())
# 如有False,说明Annotation下有重复的文件

玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象
这里我们发现该数据集第二个坑,Annotation目录下存在重复的标注文件指向同一个目标图片的情况(否则上面就显示True)。
我们继续进一步探究是哪些标注文件重复了。


我们查看一下原本的XML文件数量 和 去重后的XML文件数量。

# 显示Annotation目录下去重后的XML文件数量、原本的XML文件数量
print(len(xml_file_df['uid_str'].unique()), len(xml_file_df[0].unique()) )

玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象


我们获取一下那些重名(同一UID)的xml文件。

# 获取那些重复的xml文件的索引
idx = xml_file_df['uid_str'][xml_file_df['uid_str'].duplicated(keep=False)].index
# 对xml_file_df文件应用idx索引,获取完整文件名
xml_file_name_duplicated = pd.DataFrame(xml_file_df.loc[idx,:])

# 导出到csv文件(记录一下)
xml_file_name_duplicated.to_csv('duplicated.csv')
xml_file_name_duplicated[:6]

玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象

xml_file_name_duplicated = pd.read_csv('duplicated.csv', index_col=0)
print(len(xml_file_name_duplicated))  # 显示重复条目数量
xml_file_name_duplicated['0'][:12].values  # 显示前12行

# 可以看到A0003和A0004中存在相同名称的文件。
# 我们知道A0003和A0004是两个不同的患者(Clinical Data的“statistics-clinical-20201221.xlsx”文件),理应不可能存在相同的CT影像,所以应该是xml标注文件本身出错了

玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象
以上我们可以看到A0003和A0004中存在相同名称的文件。
我们知道A0003和A0004是两个不同的患者(从Clinical Data的“statistics-clinical-20201221.xlsx”文件看出),理应不可能存在相同的CT影像,所以应该是xml标注文件本身出错了。
那么具体是怎么出错了呢?


# 查看重复条目有多少种,如果为重复条目总数的1/2,那么均为两两重复
print('重复条目有', len(xml_file_name_duplicated['uid_str'].unique()), '种,总条目为', len(xml_file_name_duplicated), '个')

# 下面我们看看这些重复的标注文件的标注情况

玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象
上面我们得知重复标注的情况是两两重复。
我们再进一步查看一下重复标注的情况。


封装函数,传入xml文件,显示标注效果

我们设计一个函数,传入xml文件路径,显示图片和锚框。

# 设计一个函数,传入xml文件路径,显示图片和锚框
##################

# 从XML文件获取bounding box信息
import xml.etree.ElementTree as ET
def get_labelFromXml(xml_file):     
    label=[]
    bbox_list=[]

    an_file = open(xml_file, encoding='utf-8')
    tree=ET.parse(an_file)
    root = tree.getroot()
    for object in root.findall('object'):    
        cancer_type=object.find('name').text.upper()
        xmin=object.find('bndbox').find('xmin').text
        xmax=object.find('bndbox').find('xmax').text
        ymin=object.find('bndbox').find('ymin').text
        ymax=object.find('bndbox').find('ymax').text

        if int(xmin)==0 or int(xmax)==0 or int(ymin)==0 or int(ymax)==0:
            pass
        elif int(xmin)==int(xmax) or int(ymin)==int(ymax):
            pass
        else:
            bbox=[int(xmin),int(ymin),int(xmax),int(ymax)]
            bbox_list.append(bbox)
            label.append(cancer_type)
    return bbox_list,label

# 画布上添加锚框
def bbox_to_rect(bbox, color):
    # 将边界框(左上x,左上y,右下x,右下y)格式转换成matplotlib格式:
    # ((左上x,左上y),宽,高)
    return plt.Rectangle(
        xy=(bbox[0], bbox[1]), width=bbox[2]-bbox[0], height=bbox[3]-bbox[1],
        fill=False, edgecolor=color, linewidth=2)

def show_img_and_anchors(url):  # 传入xml文件路径,展示标注效果,一张图片可显示多个bbox框
    # 获取
    uid = xml_file_df.loc[xml_file_df[0]==url, 'uid_str'].values[0]
    im = df_dcm.loc[df_dcm['uid_str']==uid].values[0][0]
    im = pydicom.read_file(im)

    # 获取像素矩阵
    img_arr = im.pixel_array

    fig = plt.imshow(img_arr,cmap=plt.cm.bone)
    plt.title("UID:{}".format(uid))

    bbox, label = get_labelFromXml(url)

    for i, j in zip(bbox, label):
        fig.axes.add_patch(bbox_to_rect(i, 'red'))
        fig.axes.text(i[0]+12, i[1]+12, j,
                            va='center', ha='center', fontsize=12, color='red')
    
def show_imgs_and_anchors(urls, num=5):  # 传入xml文件路径组成的列表,展示多张图片发标注效果
    num_toshow = min(num, len(urls))
    print('载入', len(urls), '张图片,显示前', num, '张。')

    # 获取
    temp_df = xml_file_df.loc[xml_file_df[0].isin(urls)]
    urls = temp_df[0].values  # 这里urls顺序被重排,需要重新赋值以此,以和uids建立一一对应
    uids = temp_df['uid_str'].values
    ims = [df_dcm.loc[df_dcm['uid_str']==x].values[0][0] for x in uids]
    ims_dcm = [pydicom.read_file(x).pixel_array for x in ims]  # 获取像素矩阵List

    # 取标注框和类别
    bbox_label = [get_labelFromXml(i) for i in urls]

    # _表示忽略不适用的变量,返回的fig用不上
    _, axes = plt.subplots(nrows=1, ncols=num_toshow, figsize=(48,48))
    # 使用zip方法,在for循环中设置axes中的各个子区域的参数并绘图
    for ax, uid, img, lbl in zip(axes, uids, ims_dcm, bbox_label):
        ax.imshow(img, cmap=plt.cm.bone)
        ax.set_title(uid)

        bbox, label = lbl
        for i, j in zip(bbox, label):
            ax.add_patch(bbox_to_rect(i, 'red'))
            ax.text(i[0]+12, i[1]+12, j,
                            va='center', ha='center', fontsize=12, color='red')
            ax.axes.get_xaxis().set_visible(False)
            ax.axes.get_yaxis().set_visible(False)

展示标注效果(一个xml文件):
玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象


展示标注效果(多个xml文件):
玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象

玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象

我们看到上方第1行第1张图片和第2行第1张图片是标注了同一张CT图片的情况。
我们可以看到标注的质量差不多,若标注得差不多,则可以假设不同的标注框可以作为一种数据增强的形式,因此可以无需特意舍弃重复的对应同UID的xml文件。
下面抽样查看一下所有的的重复标记情况。


我们可以再随机抽20张看看

# 随机抽20张看看
slice = np.random.choice(len(xml_file_name_duplicated), size=(4,5), replace=False)  # 生成4×5整数矩阵
for i in slice:
    urls = xml_file_name_duplicated['0'].values[i]
    show_imgs_and_anchors(urls, num=5)

效果见源码文件。

整理数据③——将PETCT的三通道图像转成平扫CT的单通道图像格式

普通CT图像是单通道(512×512),但PETCT图像是三通道(512×512×3),需转成单通道进行训练。
因为日后我们希望使用平扫的CT片子进行推理预测。

我们看看读取PETCT和普通CT片子的图片shape:

# 各取一张ct,一张petct图像的xml文件
url_ct = 'Lung-PET-CT-Dx-Annotations-XML-Files-rev12222020/Annotation\\A0213\\1.3.6.1.4.1.14519.5.2.1.6655.2359.211226049141098860991228194230.xml'  # 普通CT图像
url_petct = 'Lung-PET-CT-Dx-Annotations-XML-Files-rev12222020/Annotation\\A0213\\1.3.6.1.4.1.14519.5.2.1.6655.2359.284461122128650673200074494931.xml'  # PETCT图像
# 从xml文件获取对应ct图像文件信息
def get_img_pixel_array(url):
    uid = xml_file_df.loc[xml_file_df[0]==url, 'uid_str'].values[0]
    im = df_dcm.loc[df_dcm['uid_str']==uid].values[0][0]
    im = pydicom.read_file(im)
    img_arr = im.pixel_array  # 获取像素矩阵
    return img_arr

print('ct图像矩阵的形状为,', get_img_pixel_array(url_ct).shape)
print('petct图像矩阵的形状为,', get_img_pixel_array(url_petct).shape)

玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象


关于PETCT三通道转单通道灰度图的一些思考

我这里使用了opencv库的方法将PETCT的三通道转成单通道灰度图。
在opencv库中,三通道转单通道主要是两种转换方法:COLOR_BGR2GRAY or COLOR_RGB2GRAY

我们知道,直接使用cv2读取后图片的通道顺序是BGR,而pydicom读取的pixel_array的通道顺序应该是RGB(调用PhotometricInterpretation属性可以看到)。
所以对pixel_array直接使用cv2的转灰度方法时,可以使用COLOR_RGB2GRAY模式。

但是我们知道PETCT的图像信息是 正常的CT影像 和 代谢摄取增高影(高亮部分)两者重合。
我们发现使用COLOR_BGR2GRAY模式转灰度后,代谢摄取增广的高亮信息较COLOR_RGB2GRAY模式不明显。(下面的代码块可见效果)
这样似乎更适合用于训练,因为后面我们需要常用普通平扫的CT片子进行预测。

因此,转单通道我采用了cv2的COLOR_BGR2GRAY模式。

关于三通道转灰度图的一些其他参考资料:

  1. https://note.nkmk.me/python-opencv-numpy-color-to-gray/
  2. https://stackoverflow.com/questions/62855718/why-would-cv2-color-rgb2gray-and-cv2-color-bgr2gray-give-different-results

两种转单通道模式的对比:

import cv2 as cv

img_array = get_img_pixel_array(url_petct)
img_array_gray = cv.cvtColor(img_array, cv.COLOR_BGR2GRAY)
img_array_gray2 = cv.cvtColor(img_array, cv.COLOR_RGB2GRAY)

# # img_array = np.array(img_array, dtype=np.uint16)
_, axes = plt.subplots(1,3,figsize=(24,24))
axes[0].imshow(img_array, cmap=plt.cm.bone)
axes[0].set_title('PETCT')
axes[1].imshow(img_array_gray, cmap=plt.cm.bone)
axes[1].set_title('COLOR_BGR2GRAY')
axes[2].imshow(img_array_gray2, cmap=plt.cm.bone)
axes[2].set_title('COLOR_RGB2GRAY')
plt.show()
plt.close()

玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象

建立Dataset

有了前面的数据整理,我们可以建立Dataset数据集对象了。
目标是传入 [dcm图片集] 和 对应的 [xml标注集] ,即生成一个Dataset对象。

import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image

transform=transforms.Compose([
    transforms.ToTensor(),    
])

但是,这里我们要注意,pydicom从CT读取的pixel_array数据类型(dtype)为uint16,从PETCT读取的pixel_array则为uint8
这会导致Image.open(PIL库)读取并使用transforms.ToTensor()转成Tensor后数据类型不一样。前者变为torch.int16,后者变为torch.float32。(如下演示)

因此,我们需要将pixel_array统一转成float32

玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象


创建Dataset数据集对象(Pytorch)。
注意一下Dataset输出的数据格式,img为图片Tensor,label则是一个dict,内含bbox的坐标和类别。

class_to_id={'A':1, 'B':2, 'E':3, 'G':4}
# 重写get_labelFromXml,返回label的id
def get_labelidFromXml(xml_file):     
    label=[]
    bbox_list=[]

    an_file = open(xml_file, encoding='utf-8')
    tree=ET.parse(an_file)
    root = tree.getroot()
    for object in root.findall('object'):    
        cancer_type=object.find('name').text.upper()
        xmin=object.find('bndbox').find('xmin').text
        xmax=object.find('bndbox').find('xmax').text
        ymin=object.find('bndbox').find('ymin').text
        ymax=object.find('bndbox').find('ymax').text

        if int(xmin)==0 or int(xmax)==0 or int(ymin)==0 or int(ymax)==0:
            pass
        elif int(xmin)==int(xmax) or int(ymin)==int(ymax):
            pass
        else:
            bbox=[int(xmin),int(ymin),int(xmax),int(ymax)]
            bbox_list.append(bbox)
            label.append(class_to_id[cancer_type])
    return bbox_list,label

# 计划传入img和label,以此对应dcm文件路径集和xml文件路径集
class LungDetection(Dataset):
    def __init__(self, img, label, transform=transform,):
        self.img = img
        self.label = label
        self.transform = transform

    def __getitem__(self, index):
        img = self.img[index]
        label = self.label[index]
        
        img_open=pydicom.read_file(img)
        img_array=img_open.pixel_array

        if len(img_array.shape) == 3:
            img_array = cv.cvtColor(img_array, cv.COLOR_BGR2GRAY)

        img_array = np.array(img_array, dtype=np.float32)
        
        img_pic = Image.fromarray(img_array)
        img_tensor=self.transform(img_pic)

        bbox, label = get_labelidFromXml(label)
        
        bbox_tensor = torch.as_tensor(bbox,dtype=torch.float32)
        label_tensor = torch.as_tensor(label,dtype=torch.int64)
        target={}
        target['boxes']=bbox_tensor
        target['labels']=label_tensor

        return img_tensor, target

    def __len__(self):
        return len(self.img)

xml_file_df 是我们之前整理出的xml标签文件,我们现在将xml文件和dcm文件对应起来。

# xml_file_df 是我们之前整理出的xml标签文件,我们现在将xml文件和dcm文件对应起来
xml_file_dataset = xml_file_df.reset_index(drop=True)
xml_file_dataset.columns = ['xml', 'uid_str']
xml_file_dataset

玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象

根据xml的UID对应上dcm文件:
下面这段代码跑起来需要几分钟的时间,所以跑完后可以保存一下csv文件

xml_file_dataset['dcm'] = xml_file_dataset['uid_str'].apply(lambda x : df_dcm.loc[df_dcm['uid_str']==x].values[0][0])
xml_file_dataset.to_csv('xml_file_dataset.csv')
# 以上代码需要跑8分钟,所以保存起来
xml_file_dataset = pd.read_csv('xml_file_dataset.csv', index_col=0)
xml_file_dataset

玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象


传入Dataset。

img = xml_file_dataset['dcm'].values
label = xml_file_dataset['xml'].values
lungdetection_dataset = LungDetection(img=img, label=label, transform=transform)

玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象

顺利完成!文章来源地址https://www.toymoban.com/news/detail-419083.html

到了这里,关于玩转肺癌目标检测数据集Lung-PET-CT-Dx ——③整理、验证数据,建立Dataset对象的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 快速玩转Yolov5目标检测—没有好的显卡也能玩(二)

            上篇  快速玩转Yolov5目标检测—没有好的显卡也能玩(一) 已经将YoloV5在我的笔记本电脑上快速跑起来了,因为电脑显卡一般,所以运行的CPU版本,从推理结果来看,耗时还是蛮高的,如下图,平均每帧0.45秒左右: 理论上这已经能满足很多场景下的需求了,比如明

    2024年02月05日
    浏览(45)
  • 【玩转Jetson TX2 NX】(七)TX2 NX YoLoV4环境搭建+板载摄像头实时目标检测(详细教程+错误解决)

    直接下载,然后解压,最后移动到Jetson TX2 NX,如图所示,darknet下载链接: https://github.com/AlexeyAB/darknet 将解压的文件复制到Jetson TX2 NX,如图所示: 下载yolov4.weights权重文件,如图所示: 将权重文件 yolov4.weights 拷贝至 darknet 目录下,如图所示: 依次输入命令,修改Makefile 如图

    2024年02月10日
    浏览(41)
  • 目标检测数据集:红外图像弱小飞机目标检测数据集

    ✨✨✨✨✨✨目标检测数据集✨✨✨✨✨✨ 本专栏提供各种场景的数据集,主要聚焦: 工业缺陷检测数据集、小目标数据集、遥感数据集、红外小目标数据集 ,该专栏的数据集会在多个专栏进行验证,在多个数据集进行验证mAP涨点明显, 尤其是小目标、遮挡物精度提升明显

    2024年02月08日
    浏览(41)
  • [数据集][目标检测]垃圾目标检测数据集VOC格式14963张44类别

    数据集格式:Pascal VOC格式(不包含分割的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):14963 标注数量(xml文件个数):14963 标注类别数:44 标注类别名称:[\\\"toiletries\\\",\\\"plastic utensils\\\",\\\"seasoning bottles\\\",\\\"leftovers\\\",\\\"chopsticks\\\",\\\"ceramic utensils\\\",\\\"pots\\\",\\\"metal utensils\\\",\\\"cutting boards\\\",\\\"ol

    2024年02月11日
    浏览(41)
  • 03- 目标检测数据集和标注工具介绍 (目标检测)

    要点: 常用数据集和标注工具 标注工具 PPOCRLabel github地址:paddleocrlabel 参考文档:目标检测简介 - 知乎 1. PASCAL VOC VOC数据集 是目标检测经常用的一个数据集,自2005年起每年举办一次比赛,最开始只有4类,到2007年扩充为 20个类 ,共有两个常用的版本: 2007和2012 。学术界常

    2024年02月07日
    浏览(38)
  • [数据集][目标检测]道路坑洼目标检测数据集VOC格式1510张2类别

    数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):1510 标注数量(xml文件个数):1510 标注类别数:2 标注类别名称:[\\\"keng\\\",\\\"jingai\\\"] 每个类别标注的框数: keng count = 3166 jingai count = 442 使用标注工具:labelI

    2024年02月12日
    浏览(38)
  • [数据集][目标检测]城市道路井盖破损丢失目标检测1377张

    数据集制作单位:未来自主研究中心(FIRC) 数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):1377 标注数量(xml文件个数):1377 标注类别数:4 标注类别名称:[\\\"jg\\\",\\\"jg_ps\\\",\\\"jg_ds\\\",\\\"jg_nd\\\"] 每个类别标注的框数:

    2024年02月15日
    浏览(41)
  • [数据集][目标检测]钢材表面缺陷目标检测数据集VOC格式2279张10类别

    数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):2279 标注数量(xml文件个数):2279 标注类别数:10 标注类别名称:[\\\"yueyawan\\\",\\\"siban\\\",\\\"hanfeng\\\",\\\"chongkong\\\",\\\"shuiban\\\",\\\"yahen\\\",\\\"youban\\\",\\\"yaozhe\\\",\\\"zhehen\\\",\\\"yiwu\\\"] 每个类别标注的

    2024年02月12日
    浏览(49)
  • [数据集][目标检测]PCB板缺陷目标检测数据集VOC格式693张6类别

    数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):693 标注数量(xml文件个数):693 标注类别数:6 标注类别名称:[\\\"missing_hole\\\",\\\"spurious_copper\\\",\\\"spur\\\",\\\"mouse_bite\\\",\\\"open_circuit\\\",\\\"short\\\"] 每个类别标注的框数: missin

    2024年02月12日
    浏览(36)
  • 睿智的目标检测64——目标检测中的MixUp数据增强方法

    哈哈哈!我再来一次数据增强! https://github.com/bubbliiiing/object-detection-augmentation MixUp数据增强方法在最新的几个Yolo算法中得到了广泛的应用,特别在YoloX中,s、m、l、x四个型号的网络都使用了MixUp数据增强。nano和tiny由于模型的拟合能力一般没有使用MixUp,但也说明了MixUp具有强

    2024年02月01日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包