FasterNet

这篇具有很好参考价值的文章主要介绍了FasterNet。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

更高FLOPS才是更快更强的底气,作者重新审视了现有的操作符,特别是DWConv的计算速度——FLOPS。作者发现导致低FLOPS问题的主要原因是频繁的内存访问。然后,作者提出了PConv作为一种竞争性替代方案,它减少了计算冗余以及内存访问的数量。

论文链接:https://paperswithcode.com/paper/run-don-t-walk-chasing-higher-flops-for

为了设计快速神经网络,许多工作都集中在减少浮点运算(FLOPs)的数量上。然而,作者观察到FLOPs的这种减少不一定会带来延迟的类似程度的减少。这主要源于每秒低浮点运算(FLOPS)效率低下。

为了实现更快的网络,作者重新回顾了FLOPs的运算符,并证明了如此低的FLOPS主要是由于运算符的频繁内存访问,尤其是深度卷积。因此,本文提出了一种新的partial convolution(PConv),通过同时减少冗余计算和内存访问可以更有效地提取空间特征。

基于PConv进一步提出FasterNet,这是一个新的神经网络家族,它在广泛的设备上实现了比其他网络高得多的运行速度,而不影响各种视觉任务的准确性。例如,在ImageNet-1k上小型FasterNet-T0在GPU、CPU和ARM处理器上分别比MobileVitXXS快3.1倍、3.1倍和2.5倍,同时准确度提高2.9%。

大模型FasterNet-L实现了令人印象深刻的83.5%的TOP-1精度,与Swin-B不相上下,同时GPU上的推理吞吐量提高了49%,CPU上的计算时间也节省了42%。

神经网络在图像分类、检测和分割等各种计算机视觉任务中经历了快速发展。尽管其令人印象深刻的性能为许多应用程序提供了动力,但一个巨大的趋势是追求具有低延迟和高吞吐量的快速神经网络,以获得良好的用户体验、即时响应和安全原因等。

如何快速?研究人员和从业者不需要更昂贵的计算设备,而是倾向于设计具有成本效益的快速神经网络,降低计算复杂度,主要以浮点运算(FLOPs)的数量来衡量。

MobileNet、ShuffleNet和GhostNet等利用深度卷积(DWConv)和/或组卷积(GConv)来提取空间特征。然而,在减少FLOPs的过程中,算子经常会受到内存访问增加的副作用的影响。MicroNet进一步分解和稀疏网络,将其FLOPs推至极低水平。尽管这种方法在FLOPs方面有所改进,但其碎片计算效率很低。此外,上述网络通常伴随着额外的数据操作,如级联、Shuffle和池化,这些操作的运行时间对于小型模型来说往往很重要。

除了上述纯卷积神经网络(CNNs)之外,人们对使视觉Transformer(ViTs)和多层感知器(MLP)架构更小更快也越来越感兴趣。例如,MobileViT和MobileFormer通过将DWConv与改进的注意力机制相结合,降低了计算复杂性。然而,它们仍然受到DWConv的上述问题的困扰,并且还需要修改的注意力机制的专用硬件支持。使用先进但耗时的标准化和激活层也可能限制其在设备上的速度。

所有这些问题一起导致了以下问题:这些“快速”的神经网络真的很快吗?为了回答这个问题,作者检查了延迟和FLOPs之间的关系,这由

FasterNet

其中FLOPS是每秒浮点运算的缩写,作为有效计算速度的度量。虽然有许多减少FLOPs的尝试,但都很少考虑同时优化FLOPs以实现真正的低延迟。为了更好地理解这种情况,作者比较了Intel CPU上典型神经网络的FLOPS。 

FasterNet

图2中的结果表明,许多现有神经网络的FLOPS较低,其FLOPS通常低于流行的ResNet50。由于FLOPS如此之低,这些“快速”的神经网络实际上不够快。它们的FLOPs减少不能转化为延迟的确切减少量。在某些情况下,没有任何改善,甚至会导致更糟的延迟。例如,CycleMLP-B1具有ResNet50的一半FLOPs,但运行速度较慢(即CycleMLPB1与ResNet50:111.9ms与69.4ms)。

请注意,FLOPs与延迟之间的差异在之前的工作中也已被注意到,但由于它们采用了DWConv/GConv和具有低FLOPs的各种数据处理,因此部分问题仍未解决。人们认为没有更好的选择。

本文旨在通过开发一种简单、快速、有效的运算符来消除这种差异,该运算符可以在减少FLOPs的情况下保持高FLOPS。具体来本文旨在通过开发一种简单、快速、有效的运算符来消除这种差异,该运算符可以在减少FLOPs的情况下保持高FLOPS。

具体来说,作者重新审视了现有的操作符,特别是DWConv的计算速度——FLOPS。作者发现导致低FLOPS问题的主要原因是频繁的内存访问。然后,作者提出了PConv作为一种竞争性替代方案,它减少了计算冗余以及内存访问的数量。

图1说明了PConv的设计。它利用了特征图中的冗余,并系统地仅在一部分输入通道上应用规则卷积(Conv),而不影响其余通道。本质上,PConv的FLOPs低于常规Conv,而FLOPs高于DWConv/GConv。换句话说,PConv更好地利用了设备上的计算能力。PConv在提取空间特征方面也很有效,这在本文后面的实验中得到了验证。

作者进一步引入PConv设计了FasterNet作为一个在各种设备上运行速度非常快的新网络家族。特别是,FasterNet在分类、检测和分割任务方面实现了最先进的性能,同时具有更低的延迟和更高的吞吐量。例如,在GPU、CPU和ARM处理器上,小模型FasterNet-T0分别比MobileVitXXS快3.1倍、3.1倍和2.5倍,而在ImageNet-1k上的准确率高2.9%。大模型FasterNet-L实现了83.5%的Top-1精度,与Swin-B不相上下,同时在GPU上提供了49%的高吞吐量,在CPU上节省了42%的计算时间。

总之,贡献如下:

  • 指出了实现更高FLOPS的重要性,而不仅仅是为了更快的神经网络而减少FLOPs。

  • 引入了一种简单但快速且有效的卷积PConv,它很有可能取代现有的选择DWConv。

  • 推出FasterNet,它在GPU、CPU和ARM处理器等多种设备上运行良好且普遍快速。

  • 对各种任务进行了广泛的实验,并验证了PConv和FasterNet的高速性和有效性。

PConv和FasterNet的设计

原理

FasterNetFasterNet

 PConv作为一个基本的算子

FasterNet在下面演示了通过利用特征图的冗余度可以进一步优化成本。如图3所示,特征图在不同通道之间具有高度相似性。许多其他著作也涵盖了这种冗余,但很少有人以简单而有效的方式充分利用它。 FasterNetFasterNet

请注意,保持其余通道不变,而不是从特征图中删除它们。这是因为它们对后续PWConv层有用,PWConv允许特征信息流经所有通道。

PConv之后是PWConv

FasterNet为了充分有效地利用来自所有通道的信息,进一步将逐点卷积(PWConv)附加到PConv。它们在输入特征图上的有效感受野看起来像一个T形Conv,与均匀处理补丁的常规Conv相比,它更专注于中心位置,如图5所示。为了证明这个T形感受野的合理性,首先通过计算位置的Frobenius范数来评估每个位置的重要性。

FasterNet作者认为一个显著位置是具有最大Frobenius范数的位置。然后,在预训练的ResNet18中集体检查每个过滤器,找出它们的显著位置,并绘制显著位置的直方图。图6中的结果表明,中心位置是过滤器中最常见的突出位置。换句话说,中心位置的权重比周围的更重。这与集中于中心位置的T形计算一致。 

FasterNet

FasterNet作为Backbone

鉴于新型PConv和现成的PWConv作为主要的算子,进一步提出FasterNet,这是一个新的神经网络家族,运行速度非常快,对许多视觉任务非常有效。作者的目标是使体系结构尽可能简单,使其总体上对硬件友好。

FasterNet在图4中展示了整体架构。它有4个层次级,每个层次级前面都有一个嵌入层(步长为4的常规4×4卷积)或一个合并层(步长为2的常规2×2卷积),用于空间下采样和通道数量扩展。每个阶段都有一堆FasterNet块。作者观察到,最后两个阶段中的块消耗更少的内存访问,并且倾向于具有更高的FLOPS,如表1中的经验验证。因此,放置了更多FasterNet块,并相应地将更多计算分配给最后两个阶段。每个FasterNet块有一个PConv层,后跟2个PWConv(或Conv 1×1)层。它们一起显示为倒置残差块,其中中间层具有扩展的通道数量,并且放置了Shorcut以重用输入特征。

除了上述算子,标准化和激活层对于高性能神经网络也是不可或缺的。然而,许多先前的工作在整个网络中过度使用这些层,这可能会限制特征多样性,从而损害性能。它还可以降低整体计算速度。相比之下,只将它们放在每个中间PWConv之后,以保持特征多样性并实现较低的延迟。

此外,使用批次归一化(BN)代替其他替代方法。BN的优点是,它可以合并到其相邻的Conv层中,以便更快地进行推断,同时与其他层一样有效。对于激活层,根据经验选择了GELU用于较小的FasterNet变体,而ReLU用于较大的FasterNet变体,同时考虑了运行时间和有效性。最后三个层,即全局平均池化、卷积1×1和全连接层,一起用于特征转换和分类。

为了在不同的计算预算下提供广泛的应用,提供FasterNet的Tiny模型、Small模型、Medium模型和Big模型变体,分别称为FasterNetT0/1/2、FasterNet-S、FasterNet-M和FasterNet-L。它们具有相似的结构,但深度和宽度不同。

架构规范如下:

FasterNet

代码实现

FasterNet

实验

PConv的快速性与高Flops

FasterNet

PConv与PWConv一起有效

FasterNet

FasterNet on ImageNet-1k 

FasterNet

FasterNet FasterNet

FasterNet FasterNet在下游任务的表现

1、目标检测

FasterNet

消融实验

FasterNet

whaosoft aiot http://143ai.com文章来源地址https://www.toymoban.com/news/detail-419114.html

到了这里,关于FasterNet的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 毕业就想进大厂?啃完这篇阿里大神整理的Kafka神仙文档,从此面试底气十足

    知道Kafka基本原理,了解关键术语概念; 可以使用Kafka进行消息系统开发; 通过Java语言来使用Kafka进行消息收发。 第2章 生产者详解 ============================================================================ 本章主要讲了生产者客户端的用法以及整体流程架构,主要内容包括配置参数的详解

    2024年04月14日
    浏览(37)
  • int8,FLOPS,FLOPs,TOPS 等具体含义

    算力的计量单位FLOPS(Floating-point operations per second),FLOPS表示每秒浮点的运算次数。具体使用时,FLOPS前面还会有一个字母常量,例如TFLOPS、PFLOPS。这个字母T、P代表次数,T代表每秒一万亿次,P代表每秒一千万亿次。 除了运算次数,衡量算力水平时还要看算力精度。例如,

    2024年02月04日
    浏览(34)
  • 【计算机视觉】GFLOPs、FLOPS和FLOPs的区别和联系(含代码示例)

    这三个概念其实都差不多,都涉及浮点运算,但是还是有一些小的不同之处,下面简单总结一下: GFLOPS 就是 Giga Floating-point Operations Per Second,即每秒10亿次的浮点运算数,常作为GPU性能参数但不一定代表GPU的实际表现,因为还要考虑具体如何拆分多边形和像素、以及纹理填充,理

    2024年02月03日
    浏览(37)
  • GPT-5、开源、更强的ChatGPT!

    年终岁尾,正值圣诞节热闹气氛的OpenAI写下了2024年的发展清单。 OpenAI联合创始人兼首席执行官Sam Altman在社交平台公布 ,AGI(稍晚一些)、GPT-5、更好的语音模型、更高的费率限制; 更好的GPTs;更好的推理能力;对唤醒/行为程度的控制;视频模型;个性化;更好的浏览;开

    2024年02月03日
    浏览(39)
  • 一行代码搞定Spring策略模式,强的离谱

    在Spring中大量使用策略模式来简化 if/else 代码,比如Spring Security 的各种 AuthenticationProvider 等等,但是实现方式过于麻烦,使用重复套路来实现。 场景:关于用户订单充值(订单支付同理),我们都知道,现今的支付方式是非常的多的,例如:支付宝、微信、银联、钱包(各个

    2024年02月07日
    浏览(41)
  • 更强的端点控制如何保护系统和数据

    端点——员工日常使用的笔记本电脑、设备和工作站——正在成为网络攻击者的目标。 如果他们可以仅通过一个端点访问组织的系统,那么他们就拥有一个启动板,可以从该启动板在网络上横向移动,以窃取数据或植入勒索软件等。 他们甚至可以提升权限以获得对整个企业

    2024年02月05日
    浏览(35)
  • 一文讲解thop库计算FLOPs问题

    计算模型的FLOPs及参数大小 FLOPS是处理器性能的衡量指标,是“每秒所执行的浮点运算次数”的缩写。 FLOPs是算法复杂度的衡量指标,是“浮点运算次数”的缩写,s代表的是复数。 一般使用thop库来计算,GitHub: https://github.com/Lyken17/pytorch-OpCounter 但官网的Readme中详细写出了是

    2024年01月19日
    浏览(38)
  • 神经网络模型的参数量和FlOPS

    FLOPS:注意S是大写,是 “每秒所执行的浮点运算次数”(floating-point operations per second)的缩写。它常被用来估算电脑的执行效能,尤其是在使用到大量浮点运算的科学计算领域中。正因为FLOPS字尾的那个S,代表秒,而不是复数,所以不能省略掉。 FLOPs:注意s小写,是floatin

    2024年02月02日
    浏览(37)
  • Monarch Mixer:一种性能比Transformer更强的网络架构

    六年前,谷歌团队在arXiv上发表了革命性的论文《Attention is all you need》。作为一种优势的机器学习网络架构,Transformer技术迅速席卷全球。Transformer一直是现代基础模型背后的主力架构,并且在不同的应用程序中取得了令人印象深刻的成功:包括像BERT、ChatGPT和Flan-T5这样的预训

    2024年02月05日
    浏览(53)
  • 【译】自控力强的人的秘密生活(比你想象更容易)

    原作:里卡·伊瓦内宁 引言:研究表明,自控力强的人善于避免诱惑,而不是抵制诱惑   “如果我有更多的自制力就好了。” “我没有这么铁石心肠。” “我也想享受生活——而不仅仅是受苦。” 这些都是当人们了解到我的生活方式时可能会说的话。 我就是那种令人讨厌

    2024年02月19日
    浏览(29)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包