大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)

这篇具有很好参考价值的文章主要介绍了大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、概述

Hudi(Hadoop Upserts Deletes and Incrementals),简称Hudi,是一个流式数据湖平台,关于Hudi的更多介绍可以参考我以下几篇文章:

  • 大数据Hadoop之——新一代流式数据湖平台 Apache Hudi
  • 大数据Hadoop之——Apache Hudi 数据湖实战操作(Spark,Flink与Hudi整合)

这里主要讲解Hive、Trino、Starrocks与Hudi的整合操作,其实主要分为四大块:

  • 数据处理:计算引擎,例如:flink、spark等。
  • 数据存储:HDFS、云存储、AWS S3、对象存储等。
  • 数据管理:Apache Hudi。
  • 数据查询:查询引擎,例如:Spark、Trino(Presto)、Hive、Starrocks(Doris)等。

大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)

二、Hudi 数据管理

Hudi表的数据文件,可以使用操作系统的文件系统存储,也可以使用HDFS这种分布式的文件系统存储。为了后续分析性能和数据的可靠性,一般使用HDFS进行存储。以HDFS存储来看,一个Hudi表的存储文件分为两类。
大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)

  • .hoodie 文件: 由于CRUD的零散性, 每一次的操作都会生成一个文件,这些小文件越来越多后,会严重影响HDFS的性能,Hudi设计了一套文件合并机制。.hoodie文件夹中存放了对应的文件合并操作相关的日志文件
  • americasasia相关的路径是实际的数据文件,按分区存储,分区的路径key是可以指定的

1).hoodie文件

Hudi把随着时间流逝,对表的一系列CRUD操作叫做Timeline, Timeline中某一次的操作,叫做Instant

大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)

  • Instant Action,记录本次操作是一次数据提交(COMMITS),还是文件合并(COMPACTION),或者是文件清理(CLEANS);
  • Instant Time,本次操作发生的时间;
  • State,操作的状态,发起(REQUESTED),进行中(INFLIGHT),还是已完成(COMPLETED);

2)数据文件

Hudi真实的数据文件使用Parquet文件格式存储
大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)

  • 其中包含一个metadata元数据文件和数据文件parquet列式存储。
  • Hudi为了实现数据的CRUD,需要能够唯一标识一条记录,Hudi将把数据集中的唯一字段(record key ) +数据所在分区(partitionPath)联合起来当做数据的唯一键

三、数据存储

hudi数据集的组织目录结构与hive非常相似,一份数据集对应一个根目录。数据集被打散为多个分区,分区字段以文件夹形式存在,该文件夹包含该分区的所有文件。

大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)
在根目录下,每个分区都有唯一的分区路径,每个分区数据存储在多个文件中
大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)
每个文件都有唯一的fileId和生成文件的commit所标识。如果发生更新操作时,多个文件共享相同的fileId,但会有不同的commit
大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)
Metadata 元数据

以时间轴(timeline)的形式将数据集上的各项操作元数据维护起来,以支持数据集的瞬态视图,这部分元数据存储于根目录下的元数据目录。一共有三种类型的元数据:

  • Commits:一个单独的commit包含对数据集上一批数据的一次原子写入操作的相关信息。我们用单调递增的时间戳来标识commits,标的是一次写入操作的开始。
  • Cleans:用于清除数据集中不再被查询所用到的旧版本文件的后台活动。
  • Compactions:用于协调hudi内部的数据结构差异的后台活动。例如,将更新操作由基于行存的日志文件归集到列式数据上。

大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)

四、Hive 与 Hudi 集成使用

关于Hive的介绍与部署,可以参考我这篇文章:大数据Hadoop之——数据仓库Hive

1)安装mysql数据库

这里选择使用mysql on k8s,有不清楚的小伙伴,可以参考我这篇文章:【云原生】MySQL on k8s 环境部署
创建hive用户

MYSQL_ROOT_PASSWORD=$(kubectl get secret --namespace mysql mysql -o jsonpath="{.data.mysql-root-password}" | base64 -d)

#登录pod
kubectl exec -it mysql-primary-0 -n mysql -- bash
# 连接myslq
mysql -u root -p$MYSQL_ROOT_PASSWORD

CREATE USER 'hive'@'%' IDENTIFIED BY '123456';
GRANT ALL ON *.* to 'hive'@'%' WITH GRANT OPTION;
flush privileges;

2)安装 Hive

1、下载
wget http://archive.apache.org/dist/hive/hive-3.1.3/apache-hive-3.1.3-bin.tar.gz
tar -xf apache-hive-3.1.3-bin.tar.gz
2、配置

hive-site.xml内容如下:

<?xml version="1.0"?>  
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>  
<configuration>

<!-- 配置hdfs存储目录 -->
<property>  
  <name>hive.metastore.warehouse.dir</name>
  <value>/user/hudi_hive/warehouse</value>  
</property>  

<property>
  <name>hive.metastore.local</name>
  <value>false</value>
</property>

<property>  
  <name>hive.metastore.schema.verification</name>  
   <value>false</value>  
</property>
  
<property>  
  <name>hive.metastore.uris</name>  
  <value>thrift://hadoop-hadoop-hdfs-nn-0:9083</value>
</property>

<!-- 所连接的 MySQL 数据库的地址,hudi_hive是数据库,程序会自动创建,自定义就行 -->
<property>  
  <name>javax.jdo.option.ConnectionURL</name>
  <value>jdbc:mysql://192.168.182.110:30306/hive_metastore?createDatabaseIfNotExist=true&amp;useSSL=false&amp;serverTimezone=Asia/Shanghai</value>
</property>

<!-- MySQL 驱动 -->
<property>
  <name>javax.jdo.option.ConnectionDriverName</name>
  <value>com.mysql.cj.jdbc.Driver</value>
</property>

<!-- mysql连接用户 -->
<property>
  <name>javax.jdo.option.ConnectionUserName</name>
  <value>hive</value>
</property>  

<!-- mysql连接密码 -->
<property>
  <name>javax.jdo.option.ConnectionPassword</name>
  <value>123456</value>
</property>

<property>
    <name>datanucleus.schema.autoCreateAll</name>
    <value>true</value>
 </property>

<!--元数据是否校验-->
<property>
  <name>hive.metastore.schema.verification</name>
  <value>false</value>
</property>

<property>
  <name>system:user.name</name>
  <value>admin</value>
  <description>user name</description>
</property>

<!-- host -->
<property>
  <name>hive.server2.thrift.bind.host</name>
  <value>hadoop-hadoop-hdfs-nn-0</value>
  <description>Bind host on which to run the HiveServer2 Thrift service.</description>
</property>

<!-- hs2端口 默认是1000,为了区别,我这里不使用默认端口-->
<property>
  <name>hive.server2.thrift.port</name>
  <value>10000</value>
</property>

</configuration>

hive-env.sh #底部追加两行

export HADOOP_HOME=/opt/apache/hadoop
export HIVE_CONF_DIR=/opt/apache/apache-hive-3.1.3-bin/conf
export HIV_AUX_JARS_PATH=/opt/apache/apache-hive-3.1.3-bin/lib
3、解决Hive与Hadoop之间guava版本的差异
$ cd /opt/bigdata/hadoop/server
$ ls -l apache-hive-3.1.2-bin/lib/guava-*.jar
$ ls -l hadoop-3.3.1/share/hadoop/common/lib/guava-*.jar
# 删除hive中guava低版本
$ rm -f apache-hive-3.1.2-bin/lib/guava-*.jar
# copy hadoop中的guava到hive
$ cp hadoop-3.3.1/share/hadoop/common/lib/guava-*.jar apache-hive-3.1.2-bin/lib/
$ ls -l apache-hive-3.1.2-bin/lib/guava-*.jar
4、下载对应版本的mysql驱动包

下载地址:https://downloads.mariadb.com/Connectors/java

cd $HIVE_HOME/lib
# 根据java8版本下载这个版本,这个版本已验证可行
wget https://downloads.mariadb.com/Connectors/java/connector-java-1.2.2/mariadb-java-client-1.2.2.jar

# /etc/profile追加以下内容,source加载生效
export HIVE_HOME="/opt/apache/hive-3.1.2"
export PATH=$HIVE_HOME/bin:$PATH
5、初始化元数据
schematool -initSchema -dbType mysql --verbose
6、修改hadoop配置文件core-site.xml,表示设置可访问的用户及用户组

配置hadoop core-site.xml,再core-site.xml文件中追加如下内容

<property>
  <name>hadoop.proxyuser.admin.hosts</name>
  <value>*</value>
</property>
<property>
  <name>hadoop.proxyuser.admin.groups</name>
  <value>*</value>
</property>
7、将hudi-hive的jar包放到hive lib目录下
cp hudi-0.12.0/packaging/hudi-hadoop-mr-bundle/target/hudi-hadoop-mr-bundle-0.12.0.jar $HIVE_HOME/lib/
cp hudi-0.12.0/packaging/hudi-hive-sync-bundle/target/hudi-hive-sync-bundle-0.12.0.jar $HIVE_HOME/lib/
8、启动服务
# 启动元数据服务,默认端口9083
nohup hive --service metastore &

# 启动hiveserver2服务,默认端口10000
nohup hive --service hiveserver2 > /dev/null 2>&1 &

# 查看日志
tail -f /tmp/admin/hive.log

# 连接
beeline -u jdbc:hive2://localhost:10000  -n admin
9、测试验证
# 这里使用新命令beeline,跟hive命令差不多
$ hive
show databases;
create table users(id int,name string);
show tables;
insert into users values(1,'zhangsan');

beelive连接

beeline -u jdbc:hive2://hadoop-hadoop-hdfs-nn-0:10000  -n admin

大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)

3)通过Hive sync tool 同步数据到Hive

应用hudi不可避免地要创建对应的hive表以方便查询hudi数据。一般我们使用flink、spark写入数据时,可以配置自动建表、同步元数据。有时也会选择使用hive sync tool工具离线进行操作。

Hive sync tool的介绍

Hudi提供Hive sync tool用于同步hudi最新的元数据(包含自动建表、增加字段、同步分区信息)到hive metastore。Hive sync tool提供三种同步模式,Jdbc,Hms,hivesql。推荐使用jdbchms

官网文档:https://hudi.apache.org/docs/syncing_metastore/

1、JDBC模式同步
cd /opt/apache/hudi-0.12.0/hudi-sync/hudi-hive-sync/
./run_sync_tool.sh \
--base-path hdfs://hadoop-hadoop-hdfs-nn:9000/tmp/hudi_trips_cow \
--database hudi_hive \
--table hudi_trips_cow \
--partitioned-by dt \
--jdbc-url 'jdbc:hive2://hadoop-hadoop-hdfs-nn-0:10000' \
--partition-value-extractor org.apache.hudi.hive.MultiPartKeysValueExtractor \
--user admin \
--pass admin \
--partitioned-by dt
2、HMS 模式同步

hive meta store同步,提供hive metastore的地址,如thrift://hms:9083,通过hive metastore的接口完成同步。使用时需要设置 --sync-mode=hms --use-jdbc=false。

./run_sync_tool.sh  \
--base-path hdfs://hadoop-hadoop-hdfs-nn:9000/tmp/hudi_trips_cow \
--database hudi_hive \
--table hudi_trips_cow \
--jdbc-url thrift://hadoop-hadoop-hdfs-nn:9083  \
--user admin --pass admin \
--partitioned-by dt \
--sync-mode hms

大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)

Hive Sync时会判断表不存在时建外表并添加分区,表存在时对比表的schema是否存在差异,存在则替换,对比分区是否有新增,有则添加分区。

因此使用hive sync时有以下约束:

  • 写入数据Schema只允许增加字段,不允许修改、删除字段。
  • 分区目录只能新增,不会删除。
  • Overwrite覆写Hudi表不支持同步覆盖Hive表。
  • Hudi同步Hive表时,不支持使用timestamp类型作为分区列。

五、基于 Flink CDC 同步 MySQL 分库分表构建实时数据湖

1)Flink CDC 是什么?

2020年 Flink cdc 首次在 Flink forward 大会上官宣, 由 Alibaba的 Jark Wu & Qingsheng Ren 两位大佬介绍的,官方网址。

Flink CDC 文档:https://ververica.github.io/flink-cdc-connectors/master/content/about.html
GitHub地址:https://github.com/ververica/flink-cdc-connectors

Flink CDC(Change Data Capture:变更数据捕获) connector 可以捕获在一个或多个表中发生的所有变更。该模式通常有一个前记录和一个后记录。Flink CDC connector 可以直接在Flink中以非约束模式(流)使用,而不需要使用类似 kafka 之类的中间件中转数据

大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)

大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)

2)基于 Flink CDC 同步 MySQL 分库分表构建实时数据湖

官方文档:基于 Flink CDC 同步 MySQL 分库分表构建实时数据湖

大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)

你也可以使用不同的 source 比如 Oracle/Postgres 和 sink 比如 Hudi 来构建自己的 ETL 流程。

对上图进行简化:
大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)

1、添加flink mysql jar包

flink-sql-connector-mysql-cdc jar包下载地址:https://repo1.maven.org/maven2/com/ververica/flink-sql-connector-mysql-cdc/
大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)

cd $FLINK_HOME/lib
wget https://repo1.maven.org/maven2/com/ververica/flink-sql-connector-mysql-cdc/2.2.1/flink-sql-connector-mysql-cdc-2.2.1.jar
2、创建数据库表,并且配置binlog 文件
[mysqld]
#开启 Binlog,一般放在/var/lib/mysql;比如上面的设置重启数据库会生成mysql-bin.000001文件,文件名跟log_bin 值对应,当然也可以指定存储路径。
log_bin = mysql-bin
#删除超出这个变量保留期之前的全部日志被删除
expire_logs_days = 7
# 定一个集群内的 MySQL 服务器 ID,如果做数据库集群那么必须全局唯一。
server_id = 1024
# mysql复制主要有三种方式:基于SQL语句的复制(statement-based replication, SBR),基于行的复制(row-based replication, RBR),混合模式复制(mixed-based replication, MBR)。对应的,binlog的格式也有三种:STATEMENT,ROW,MIXED。
binlog_format = ROW

重启mysql

# 重启数据库
systemctl restart mariadb
3、 创建mysql 库表
mysql -uhive -h192.168.182.110 -P30306 -p
密码:123456

CREATE DATABASE hudi_hive;

USE hudi_hive;

CREATE TABLE `Flink_cdc` (
  `id` BIGINT(64) AUTO_INCREMENT PRIMARY KEY,
  `name` VARCHAR(64)  NULL,
  `age` INT(20) NULL,
  `birthday` TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
   `ts` TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL
) ;
INSERT INTO `hudi_hive`.`Flink_cdc`(NAME,age) VALUES("flink",18) ;

大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)

4、在 Flink SQL CLI 中使用 Flink DDL 创建表
# 添加环境变量
export HADOOP_HOME=/opt/apache/hadoop
export HADOOP_DIR_CONF=${HADOOP_HOME}/etc/hadoop
export HADOOP_CLASSPATH=`hadoop classpath`

# 启动单点flink
cd $FLINK_HOME
./bin/start-cluster.sh

# 测试可用性
# ./bin/flink run  examples/batch/WordCount.jar

# 登录flink-sql CLI
./bin/sql-client.sh embedded -j ../hudi-0.12.0/packaging/hudi-flink-bundle/target/hudi-flink1.14-bundle-0.12.0.jar shell

# 设置表输出格式
SET 'sql-client.execution.result-mode' = 'tableau';

CREATE TABLE source_mysql (
   id BIGINT PRIMARY KEY NOT ENFORCED,
   name STRING,
   age INT,
   birthday TIMESTAMP(3),
   ts TIMESTAMP(3)
 ) WITH (
 'connector' = 'mysql-cdc',
 'hostname' = '192.168.182.110',
 'port' = '30306',
 'username' = 'hive',
 'password' = '123456',
 'server-time-zone' = 'Asia/Shanghai',
 'debezium.snapshot.mode' = 'initial',
 'database-name' = 'hudi_hive',
 'table-name' = 'Flink_cdc'
 );

# 创建flinksql 中的 flinkcdc 视图
create view view_source_flinkcdc_mysql AS SELECT *, DATE_FORMAT(birthday, 'yyyyMMdd') as part FROM source_mysql;

# 查mysql数据
SELECT id, name,age,birthday, ts, part FROM view_source_flinkcdc_mysql ;

大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)

5、创建输出表,关联Hudi表,并且自动同步到Hive表

使用下面的 Flink SQL 语句将数据从 MySQL 写入 hudi 中,并同步到hive

CREATE TABLE flink_cdc_sink_hudi_hive(
id bigint ,
name string,
age int,
birthday TIMESTAMP(3),
ts TIMESTAMP(3),
part VARCHAR(20),
primary key(id) not enforced
)
PARTITIONED BY (part)
with(
'connector'='hudi',
'path'= 'hdfs://hadoop-hadoop-hdfs-nn-0:9000/flink_cdc_sink_hudi_hive', 
'table.type'= 'MERGE_ON_READ',
'hoodie.datasource.write.recordkey.field'= 'id', 
'write.precombine.field'= 'ts',
'write.tasks'= '1',
'write.rate.limit'= '2000', 
'compaction.tasks'= '1', 
'compaction.async.enabled'= 'true',
'compaction.trigger.strategy'= 'num_commits',
'compaction.delta_commits'= '1',
'changelog.enabled'= 'true',
'read.streaming.enabled'= 'true',
'read.streaming.check-interval'= '3',
'hive_sync.enable'= 'true',
'hive_sync.mode'= 'hms',
'hive_sync.metastore.uris'= 'thrift://hadoop-hadoop-hdfs-nn-0:9083',
'hive_sync.jdbc_url'= 'jdbc:hive2://hadoop-hadoop-hdfs-nn-0:10000',
'hive_sync.table'= 'flink_cdc_sink_hudi_hive',
'hive_sync.db'= 'db_hive',
'hive_sync.username'= 'admin',
'hive_sync.password'= '123456',
'hive_sync.support_timestamp'= 'true'
);
6、查询视图数据,添加数据到输出表
# 将mysql数据同步到hudi和hive
INSERT INTO flink_cdc_sink_hudi_hive SELECT id, name,age,birthday, ts, part FROM view_source_flinkcdc_mysql ;
7、查看hive数据
beeline -u jdbc:hive2://localhost:10000  -n admin
show tables from db_hive;

hive 会有两张表:flink_cdc_sink_hudi_hive_ro类型是读优化查询 , flink_cdc_sink_hudi_hive_rt 类型快照查询。

关于FlinkCDC,hive,mysql与hudi的整合就先到这里了,有任何疑问的小伙伴欢迎给我留言,后续会持续更新【大数据+云原生】相关的文档,请小伙伴耐心等待~文章来源地址https://www.toymoban.com/news/detail-419222.html

到了这里,关于大数据Hadoop之——Apache Hudi 数据湖实战操作(FlinkCDC)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Apache Hudi初探(五)(与flink的结合)--Flink 中hudi clean操作

    本文主要是具体说说Flink中的clean操作的实现 在flink中主要是 CleanFunction 函数: open函数 writeClient =FlinkWriteClients.createWriteClient(conf, getRuntimeContext()) 创建FlinkWriteClient,用于写hudi数据 this.executor = NonThrownExecutor.builder(LOG).waitForTasksFinish(true).build(); 创建一个只有一个线程的线程池,改

    2024年02月06日
    浏览(34)
  • 性能提升30%!袋鼠云数栈基于 Apache Hudi 的性能优化实战解析

    Apache Hudi 是一款开源的数据湖解决方案,它能够帮助企业更好地管理和分析海量数据,支持高效的数据更新和查询。并提供多种数据压缩和存储格式以及索引功能,从而为企业数据仓库实践提供更加灵活和高效的数据处理方式。 在金融领域,企业可以使用 Hudi 来处理大量需要

    2024年02月09日
    浏览(43)
  • Apache Hudi 在袋鼠云数据湖平台的设计与实践

    在大数据处理中,实时数据分析是一个重要的需求。随着数据量的不断增长,对于实时分析的挑战也在不断加大,传统的批处理方式已经不能满足实时数据处理的需求,需要一种更加高效的技术来解决这个问题。Apache Hudi(Hadoop Upserts Deletes and Incremental Processing)就是这样一种

    2024年02月06日
    浏览(41)
  • 探索在Apache SeaTunnel上使用Hudi连接器,高效管理大数据的技术

    Apache Hudi是一个数据湖处理框架,通过提供简单的方式来进行数据的插入、更新和删除操作,Hudi能够帮助数据工程师和科学家更高效地处理大数据,并支持实时查询。 Spark Flink SeaTunnel Zeta 批处理 流处理 精确一次性 列投影 并行处理 支持用户自定义切分 Hudi Source 连接器专为从

    2024年04月28日
    浏览(48)
  • Apache Hudi DeltaStreamer 接入CDC数据时如何完成 Kafka 的身份认证?

    题目有些拗口,简短截说,我们对于Apache Hudi DeltaStreamer在接入CDC数据时,对于其如何通过 Kafka 的身份认证,做了一系列测试和研究,有如下明确结论: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

    2024年02月16日
    浏览(38)
  • Apache hudi 核心功能点分析

    文中部分代码对应 0.14.0 版本 初始的需求是Uber公司会有很多记录级别的更新场景,Hudi 在Uber 内部主要的一个场景,就是乘客打车下单和司机接单的匹配,乘客和司机分别是两条数据流,通过 Hudi 的 Upsert 能力和增量读取功能,可以分钟级地将这两条数据流进行拼接,得到乘客

    2024年02月02日
    浏览(32)
  • Apache Hudi Timeline Server介绍

    Hudi 有一个中央时间线服务器,在驱动程序节点中运行并作为 Rest 服务。它有多种好处,第一个用例是提供 FileSystemView api。 Hudi 的核心是维护一个 TableFileSystemView,它暴露 API 来获取给定数据集的文件状态,驱动程序和执行程序将在写入和表服务生命周期的不同时间点查询该状

    2024年02月12日
    浏览(27)
  • 提升 Apache Hudi Upsert 性能的三个建议

    Apache Hudi 社区一直在快速发展,各公司正在寻找方法来利用其强大的功能来有效地摄取和管理大规模数据集。 每周社区都会收到一些常见问题,最常见的问题与 Hudi 如何执行更新插入有关,以确保以低延迟访问最新数据。 快速更新插入的主要考虑因素之一是选择正确的存储

    2024年02月05日
    浏览(42)
  • Apache Hudi初探(一)(与flink的结合)

    和 Spark 的使用方式不同, flink 结合 hudi 的方式,是以 SPI 的方式,所以不需要像使用 Spark 的方式一样, Spark 的方式如下: (这里不包括 org.apache.spark.sql.sources.DataSourceRegister ) Flink 结合 Hudi 的方式,只需要引入了对应的jar包即可,以 SPI 的方式: 其中 HoodieTableFactory 是读写 H

    2024年02月16日
    浏览(32)
  • Apache Hudi 1.x 版本重磅功能展望与讨论

    Apache Hudi 社区正在对Apache Hudi 1.x版本功能进行讨论,欢迎感兴趣同学参与讨论,PR链接:https://github.com/apache/hudi/pull/8679/files 此 RFC 提议对 Hudi 中的事务数据库层进行令人兴奋和强大的重构,以推动未来几年整个社区的持续创新。 在过去的几年里,社区成长(https://git-contributo

    2024年02月07日
    浏览(70)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包