DyLoRA:使用动态无搜索低秩适应的预训练模型的参数有效微调

这篇具有很好参考价值的文章主要介绍了DyLoRA:使用动态无搜索低秩适应的预训练模型的参数有效微调。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

又一个针对LoRA的改进方法:

DyLoRA: Parameter-Efficient Tuning of Pretrained Models using Dynamic Search-Free Low Rank Adaptation

https://arxiv.org/pdf/2210.07558v2.pdf

https://github.com/huawei-noah/KD-NLP/tree/main/DyLoRA

Part1前言

LoRA存在的问题

  • rank的值是固定的,训练完成后不能修改。
  • 优化rank的值需要大量的搜索和努力。

提出的方法:引入了一种动态低秩适应(Dy-LoRA)技术。通过对适配器模块在训练期间的不同秩所学到的表示进行排序,为一系列的秩而不是单一的秩训练LoRA块。

主要贡献

  • 动态LoRA:在LoRA的基础上,我们开发了一种新的算法(DyLoRA),使其在推理时是动态的,而不会产生额外的费用。
  • 无需搜索的LoRA:我们证明,通过在性能上做出可忽略不计的妥协,有可能避免为LoRA选择最佳秩的昂贵的搜索过程。

Part2介绍

在每一个LoRA模块中,有一个向上投影和向下投影的矩阵。设我们想训练LoRA模块在的范围内操作,其中可以被视为新的超参数。为了使LoRA模块在一系列的秩中工作,而不是单一的秩,我们需要确保增加或减少秩不会明显阻碍模型的性能。实现这种行为的一种方法是在LoRA模块的训练过程中对不同秩的信息内容进行排序。在这方面,在每个训练步骤中,我们对进行抽样。形成一个预先定义的分类分布其(支持度为Range[rmin, rmax]),并相应地截断矩阵。

是W的b截断版本。

前向传播计算时是这么计算的:

损失的计算:

另外在训练的时候增加了一个新的模块:frozen,即只更新截断块中第b个相关的行或者列。

整个流程如下:

需要注意反向传播时是否是更新整个截断块还是第b个行或列。

Part3实验结果

首先是说明不同rank对结果的影响:

接着是该方法和其他方法的对比:文章来源地址https://www.toymoban.com/news/detail-419419.html

到了这里,关于DyLoRA:使用动态无搜索低秩适应的预训练模型的参数有效微调的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包