基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力

这篇具有很好参考价值的文章主要介绍了基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

查看原文>>>基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力

目录

专题一、Python软件的安装及入门

专题二、气象常用科学计算库

专题三、气象海洋常用可视化库

专题四、爬虫和气象海洋数据

专题五、气象海洋常用插值方法

专题六、机器学习基础理论和实操

专题七、机器学习的应用实例

专题八、深度学习基础理论和实操

专题九、深度学习的应用实例

专题十、EOF统计分析

专题十一、模式后处理

其它大气领域相关推荐


        Python是功能强大、免费、开源,实现面向对象的编程语言,能够在不同操作系统和平台使用,简洁的语法和解释性语言使其成为理想的脚本语言。除了标准库,还有丰富的第三方库,Python在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能。上述优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来Python将成为气象、海洋和水文等地学领域的主流编程语言之一。

人工智能和大数据技术在许多行业都取得了颠覆式的成果,气象和海洋领域拥有海量的模式和观测数据,是大数据和人工智能应用的天然场景。Python也是当前进行机器学习和深度学习应用的最热门语言。对于的气象海洋领域的专业人员,Python是进行机器学习和深度学习工作的首选。

专题一、Python软件的安装及入门

1.1 Python背景及其在气象中的应用
1.2 Anaconda解释和安装以及Jupyter配置
1.3 Python基础语法

专题二、气象常用科学计算库

2.1 Numpy库
2.2 Pandas库
2.4 Xarray库

基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力

专题三、气象海洋常用可视化库

3.1可视化库介绍Matplotlib、Cartopy等
3.2 基础绘图

(1)折线图绘制
(2)散点图绘制
(3)填色/等值线
(4)流场矢量图

专题四、爬虫和气象海洋数据

(1)Request库的介绍
(2)爬取中央气象台天气图
(3)FNL资料爬取
(4) ERA5下载

专题五、气象海洋常用插值方法

(1)规则网格数据插值到站点
(2)径向基函数RBF插值
(3)反距离权重IDW插值
(4)克里金Kriging插值

基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力

专题六、机器学习基础理论和实操

6.1 机器学习基础原理

(1)机器学习概论
(2)集成学习(Bagging和Boosting)
(3)常用模型原理(随机森林、Adaboost、GBDT、Xgboost、lightGBM)

6.2 机器学习库scikit-learn

(1)sklearn的简介
(2)sklearn完成分类任务
(3)sklearn完成回归任务

专题七、机器学习的应用实例

本专题,在详细讲解机器学习常用的两类集成学习算法,Bagging和Boosting,对两类算法及其常用代表模型深入讲解的基础上,结合三个学习个例,并串讲一些机器学习常用技巧,将理论与实践结合。

7.1机器学习与深度学习在气象中的应用

AI在气象模式订正、短临预报、气候预测等场景的应用

7.2 GFS数值模式的风速预报订正
(1)随机森林挑选重要特征
(2)K近邻和决策树模型订正风速
(3)梯度提升决策树GBDT订正风速
(4)模型评估与对比

7.3 台风预报数据智能订正
(1)CMA台风预报数据集介绍以及预处理
(2)随机森林模型订正台风预报
(3)XGBoost模型订正台风预报
(4)台风“烟花”预报效果检验

7.4 机器学习预测风电场的风功率
(1)lightGBM模型预测风功率
(2)调参利器—网格搜索GridSearch于K折验证

基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力

专题八、深度学习基础理论和实操

8.1 深度学习基本理论

深度学习基本理论知识讲解,深入了解机器学习的基础理论和工作原理,掌握如何构建和优化神经网络模型(如人工神经网络ANN,卷积神经网络CNN、循环神经网络RNN等),提高对现有深度学习算法和技术的理解和应用能力,更好地应对后续海洋气象相关领域的实际问题和应用。

8.2 Pytorch库

(1)sklearn介绍、常用功能和机器学习方法
学习经典机器学习库sklearn的常用功能,如鸢尾花、手写字体等公开数据集的获取、划分训练集和测试集、模型搭建和模型验证等。
(2) pytorch介绍、搭建 模型

学习目前流行的深度学习框架pytorch,了解张量tensor、自动求导、梯度提升等,以BP神经网络学习sin函数为例,掌握如何搭建单层和多层神经网络,以及如何使用GPU进行模型运算。

基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力

专题九、深度学习的应用实例

本专题,在学习使用ANN预测浅水方程的基础上,进一步掌握如何使用PINN方法,将动力方程加入模型中,缓解深度学习的物理解释性差的问题。此外,气象数据是典型的时空数据,学习经典的时序预测方法LSTM,以及空间卷积算法UNET。

9.1深度学习预测浅水方程模式
(1)浅水模型介绍和数据获取
(2) 传统神经网络ANN学习浅水方程
(3)物理约束网络PINN学习浅水方程

9.2 LSTM方法预测ENSO
(1)ENSO简介及数据介绍
(2)LSTM方法原理介绍
(3)LSTM方法预测气象序列数据

9.3深度学习—卷积网络
(1)卷积神经网络介绍
(2)Unet进行雷达回波的预测

基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力

基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力

专题十、EOF统计分析

10.1 EOF基础和eofs库的介绍

10.2 EOF分析海表面温度数据
(1)SST数据计算距平,去趋势
(2)SST进行EOF分析,可视化

基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力
基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力

专题十一、模式后处理

11.1 WRF模式后处理
(1)wrf-python库介绍
(2)提取站点数据
(3)500hPa形式场绘制
(4)垂直剖面图——雷达反射率为例

11.2 ROMS模式后处理
(1)xarray为例操作ROMS输出数据
(2)垂直坐标转换,S坐标转深度坐标
(3)垂直剖面绘制
(4)水平填色图绘制

基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力
基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力

其它大气领域相关推荐

气象数据分析:基于CALMET诊断模型的高时空分辨率精细化风场模拟

WRF DA资料同化系统理论、运行与与变分、混合同化新方法技术应用

基于MATLAB野外观测站生态气象数据处理分析实践应用

全套区域高精度地学模拟-WRF气象建模、多案例应用与精美制图

R语言在气象、水文中数据处理及结果分析、绘图实践技术应用

WRF-UCM高精度城市化气象动力模拟技术与案例实践应用

Python语言在地球科学领域中的实践技术应用文章来源地址https://www.toymoban.com/news/detail-420231.html

到了这里,关于基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 毕业设计选题- 基于深度学习的海洋生物目标检测系统 YOLO 人工智能

    目录 前言 课题背景和意义 实现技术思路 一、基于深度学习的海洋生物目标检测研究主题 二、水下图像处理算法的研究 2.1Retinex算法 2.2直方图均衡化算法 2.3暗通道去雾算法 三、基于深度学习的目标检测算法 海洋生物目标检测实现效果 最后        📅大四是整个大学期间最

    2024年02月01日
    浏览(162)
  • 基于深度学习的高精度海洋生物检测识别系统(PyTorch+Pyside6+YOLOv5模型)

    摘要:基于深度学习的高精度海洋生物检测识别系统可用于日常生活中检测与定位海洋生物目标(海胆:echinus,海参:holothurian,扇贝:scallop,海星:starfish),利用深度学习算法可实现图片、视频、摄像头等方式的海洋生物目标检测识别,另外支持结果可视化与图片或视频

    2024年02月08日
    浏览(38)
  • 计算机竞赛 基于CNN实现谣言检测 - python 深度学习 机器学习

    🔥 优质竞赛项目系列,今天要分享的是 基于CNN实现谣言检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 社交媒体的发展在加速信息传播的同时,也带来了虚假谣言信息的泛滥,往往会引发诸多不

    2024年02月12日
    浏览(61)
  • 基于 Python 和深度学习技术实现的人体姿态识别

    人体姿态识别是计算机视觉领域的一个重要应用,它通过识别人体的关键点和关节位置,能够准确地判断人体的姿态和动作。这项技术可以应用在很多领域,比如运动训练、医疗康复、安保监控等,为人们的生活和工作带来了很大的便利和效益。 在本文中,我们将介绍一种基

    2024年02月07日
    浏览(40)
  • 【大数据毕设选题】基于CNN实现谣言检测 - python 深度学习 机器学习

    Hi,大家好,今天向大家介绍 一个深度学习项目 基于CNN实现谣言检测 社交媒体的发展在加速信息传播的同时,也带来了虚假谣言信息的泛滥,往往会引发诸多不安定因素,并对经济和社会产生巨大的影响。 本项目所使用的数据是从新浪微博不实信息举报平台抓取的中文谣言

    2024年01月20日
    浏览(61)
  • 【使用机器学习和深度学习对城市声音进行分类】基于两种技术(ML和DL)对音频数据(城市声音)进行分类(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 2.1 算例1 2.2 算例2 2.3 算例3 2.4 算例4

    2024年02月16日
    浏览(51)
  • 基于ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模

    022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5,将人工智能的发展推向了一个新的高度。2023年4月,更强版本的ChatGPT4.0上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。2023年

    2024年01月25日
    浏览(56)
  • 基于ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模教程

    详情点击链接:基于ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模教程 第一:GPT4 1、ChatGPT(GPT-1、GPT-2、GPT-3、GPT-3.5、GPT-4模型的演变) 2、ChatGPT对话初体验 3、GPT-4与GPT-3.5的区别,以及与国内大语言模型(文心一言、星火等)的区别 4、ChatGPT科研必备插件(Da

    2024年01月23日
    浏览(49)
  • 【转载】基于Python+深度学习+神经网络实现高度可用的生活垃圾分类机器人程序

    设计一个基于深度学习的生活垃圾分类机器人软件系统,针对现实社会中产生的垃圾照片进行自动识别分类,对不同类别的垃圾,干垃圾,湿垃圾,可回收垃圾,有害垃圾等进行分类统计处理,减轻人工针对垃圾分类的工作量,提高垃圾分类的效率。 原文地址 本基于深度学

    2024年02月12日
    浏览(48)
  • 从GPU到FPGA:深度学习模型加速技术的提升及优化!

    作者:禅与计算机程序设计艺术 随着移动计算平台(如移动终端、手机等)的普及,深度学习在移动端上的应用变得越来越多。而移动端硬件资源有限,当遇到高维度、复杂的神经网络时,移动端上深度学习算法的性能会受到影响。为了解决这一问题,近年来研究者们不断探索

    2024年02月14日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包