《论文阅读》SetGNER:General Named Entity Recognition as Entity Set Generation

这篇具有很好参考价值的文章主要介绍了《论文阅读》SetGNER:General Named Entity Recognition as Entity Set Generation。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0.总结

  • 不知道是不是大模型的流行还是什么其他原因,导致现在网上都没有人来分享NER模型的相关论文了~
  • 本文方法简单,代码应该也比较简单(但是没见作者放出来)。
  • 推荐指数:★★☆☆☆

1. 动机

  • 处理三种不同场景的NER
  • 与 sequence-to-sequence NER 方法不同,本模型不需要强制实体按照顺序生成

2. 方法

《论文阅读》SetGNER:General Named Entity Recognition as Entity Set Generation
其实就是一个BART模型,然后里面套了几层简单的处理而已。

3. 训练细节

3.1 Inverse Generation Training

Since the forward generation task is biased towards the left-to-right semantic structure.
这话意思就是说:这种自回归的生成方法倾向于从左到右的语义结构。

于是提出使用一个 inverse generation training的方法让模型同时也掌握从右到左的语义结构。

做法:使用一个额外的解码器,同时训练生成实体尾 到实体头。举例如下:Swollen, burning feet and ankles. 对于这条句子,得到的翻转目标序列则是:

3.2 联合学习

将上述得到的各个损失进行联合优化。

4. 疑惑

主要的疑惑点有:文章来源地址https://www.toymoban.com/news/detail-420591.html

  • Problem Formulation 中的对Ptr的定义。

到了这里,关于《论文阅读》SetGNER:General Named Entity Recognition as Entity Set Generation的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 【开放集检测】OpenGAN: Open-Set Recognition via Open Data Generation 论文阅读

    【开放集检测】OpenGAN: Open-Set Recognition via Open Data Generation 论文阅读

    Machine learning systems that operate in the real openworld invariably encounter test-time data that is unlike training examples, such as anomalies or rare objects that were insufficiently or even never observed during training. invariably:一贯的 … can be crisply formulated as … 可以被很清晰的定义/表述为 an elegant idea is to… 一个绝佳

    2024年02月02日
    浏览(7)
  • 有可能代替Transformer吗?Image as Set of Points 论文阅读笔记

    有可能代替Transformer吗?Image as Set of Points 论文阅读笔记

    写在前面   新的一周又开始了,冲冲冲~   这一篇文章提出了新的范式,不知道未来会不会成为主流的能并行 ResNet、Transformer 的网络。本文源于 B 站大佬的一个视频分享,遂找来这篇文章精读下。 论文地址:Image as Set of Points 代码地址:https://github.com/ma-xu/Context-Cluster 收

    2023年04月08日
    浏览(6)
  • 论文解读 X-CLIP : Expanding Language-Image Pretrained Models for General Video Recognition

    论文解读 X-CLIP : Expanding Language-Image Pretrained Models for General Video Recognition

    如何将现有的图像 - 文本多模态大模型(例如 OpenAI CLIP)用于视频内容理解,是一个非常实用且具有前景的研究课题 。它不仅可以充分挖掘图像大模型的潜力,还可以为视频大模型的设计和研究铺平道路。 在视频内容理解领域,为节省计算 / 数据开销,视频模型通常 「微调

    2024年02月02日
    浏览(6)
  • 【步态识别】GaitSet 算法学习+配置环境+代码调试运行《GaitSet: Regarding Gait as a Set for Cross-View Gait Recognition》

    【步态识别】GaitSet 算法学习+配置环境+代码调试运行《GaitSet: Regarding Gait as a Set for Cross-View Gait Recognition》

    关于GaitSet核心算法,建议直接跳到 “4. 算法核心代码——4.1 gaitset.py” 论文地址: https://ieeexplore.ieee.org/document/9351667 CASIA-B数据集下载地址: http://www.cbsr.ia.ac.cn/china/Gait%20Databases%20CH.asp 代码下载地址: https://github.com/AbnerHqC/GaitSet 1. 确定显卡型号 右键“此电脑”——“管理”

    2023年04月08日
    浏览(11)
  • ChatGLM基座:GLM(General Language Model)论文阅读笔记

    ChatGLM基座:GLM(General Language Model)论文阅读笔记

    现在有很多Pretrain model 的架构, 如Bert、GPT、T5等,但是当时没有一种模型能在NLU、有条件文本生成、无条件文本生成都有很好的表现。 一般预训练模型架构分为三种:自回归(GPT系列)、自编码(Bert系列)、编码器-解码器(T5)。 作者概述了它们目前存在的问题·: GPT:单

    2024年02月02日
    浏览(9)
  • 【PMLR21‘论文阅读】Perceiver: General Perception with Iterative Attention

    【PMLR21‘论文阅读】Perceiver: General Perception with Iterative Attention

    Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman, A., Carreira, J. (18–24 Jul 2021). Perceiver: General Perception with Iterative Attention. In M. Meila T. Zhang (Eds.), Proceedings of the 38th International Conference on Machine Learning (Vol. 139, pp. 4651–4664). PMLR. https://proceedings.mlr.press/v139/jaegle21a.html Perceiver:迭代关注的

    2024年02月20日
    浏览(2)
  • 论文阅读-A General Language for Modeling Social Media Account Behavior

    论文阅读-A General Language for Modeling Social Media Account Behavior

      论文链接:https://arxiv.org/pdf/2211.00639v1.pdf 目录 摘要 1 Introduction 2 Related work 2.1 Automation 2.2 Coordination 3 Behavioral Language for Online Classification  3.1 BLOC alphabets 3.1.1 Action alphabet 3.1.2 Content alphabets 3.2 BLOC models 3.2.1语言模式 3.2.2 Vector models 4 Discriminative power of BLOC 4.1 Characterizing individu

    2024年02月09日
    浏览(7)
  • 论文阅读 - Coordinated Behavior on Social Media in 2019 UK General Election

    论文阅读 - Coordinated Behavior on Social Media in 2019 UK General Election

    论文链接: https://arxiv.org/abs/2008.08370 目录 摘要: Introduction Contributions Related Work Dataset Method Overview Surfacing Coordination in 2019 UK GE Analysis of Coordinated Behaviors         协调的在线行为是信息和影响力行动的重要组成部分,因为它们可以更有效地传播虚假信息。 大多数关于协同

    2024年02月07日
    浏览(6)
  • 【论文阅读】Uformer:A General U-Shaped Transformer for Image Restoration

    🐳博客主页:😚睡晚不猿序程😚 ⌚首发时间:2023.6.8 ⏰最近更新时间:2023.6.8 🙆本文由 睡晚不猿序程 原创 🤡作者是蒻蒟本蒟,如果文章里有任何错误或者表述不清,请 tt 我,万分感谢!orz 目录 🚩前言 1. 内容简介 2. 论文浏览 3. 图片、表格浏览 4. 引言浏览 5. 方法 5.

    2024年02月08日
    浏览(10)
  • 【视频异常检测】Delving into CLIP latent space for Video Anomaly Recognition 论文阅读

    【视频异常检测】Delving into CLIP latent space for Video Anomaly Recognition 论文阅读

    中文题目:视频异常识别的CLIP潜在空间研究 文章信息: 原文链接:https://arxiv.org/abs/2310.02835 源代码:https://github.com/luca-zanella-dvl/AnomalyCLIP 我们介绍了一种新的方法AnomalyCLIP,它首次将大型语言和视觉(LLV)模型(如CLIP)与多实例学习相结合,用于联合视频异常检测和分类。

    2024年04月14日
    浏览(6)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包