Kaggle上使用Tensorboard

这篇具有很好参考价值的文章主要介绍了Kaggle上使用Tensorboard。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Kaggle上使用Tensorboard


1. 前言

  • 想在Kaggle上使用Tensorboard,找了一圈。
  • 参考了Kaggle上的一个Code:Tensorboard on Kaggle
  • 但发现有些变化,Code中用到的内网穿透工具Ngrok需要加一个Token,所以需要注册一个Ngrok账号,免费获取一个通道的Token。

2. Kaggle上使用Tensorboard


2.1. 方法一

  • 其实直接把在Kaggle上跑出来的Tensorboard日志文件下载到本地,在本地启动Tensorboard即可查看。
  • 当然,这里主要讲在线的方法。

2.2. 方法二

  • 在线使用Tensorboard

2.2.1. 获取一个Ngrok的免费通道

  • 访问Ngrok,注册一个账号并登录
  • 登录后界面如下,复制并保存你的Token
    Kaggle上使用Tensorboard

2.2.2. 调试运行代码

  • 主要参考Kaggle上的一个Code:Tensorboard on Kaggle
  • 建议分段运行,以避免中间出错,全部重新运行一次
  • 以下代码在Kaggle的Notebook中运行

(1) 环境准备

import tensorflow as tf # This is how we import tf
# Clear any logs from previous runs
# 清除以前运行的所有日志
!rm -rf ./logs/ 
!mkdir ./logs/

(2) 启动Tensorboard

# Download Ngrok to tunnel the tensorboard port to an external port
# 下载 Ngrok 以将 tensorboard 端口隧道传输到外部端口
!wget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip
!unzip ngrok-stable-linux-amd64.zip
# 添加自己在 Ngrok 上获取的专属Token
!./ngrok authtoken 粘贴你的专属Token
  • 注意这一步需要添加自己在 Ngrok 上获取的专属Token

Kaggle上使用Tensorboard

# Run tensorboard as well as Ngrok (for tunneling as non-blocking processes)
# 运行 tensorboard 和 Ngrok(用于作为非阻塞进程的隧道)
import os
import multiprocessing

pool = multiprocessing.Pool(processes = 10)
# --logdir ./logs/ 是 TensorBoard 的日志文件(log)路径
# 你可以修改为你训练时的log保存路径(可以用绝对/相对路径),但相关的代码路径也要记得修改
results_of_processes = [pool.apply_async(os.system, args=(cmd, ), callback = None )
                        for cmd in [
                        f"tensorboard --logdir ./logs/ --host 0.0.0.0 --port 6006 &",
                        "./ngrok http 6006 &"
                        ]]
  • 获取访问 Tensorload 的URL,访问生成的URL即可看到 Tensorload 界面
  • 但还没有产生日志文件,所以现在还看不到有图形
! curl -s http://localhost:4040/api/tunnels | python3 -c \
    "import sys, json; print(json.load(sys.stdin)['tunnels'][0]['public_url'])"

Kaggle上使用Tensorboard
Kaggle上使用Tensorboard
Kaggle上使用Tensorboard

(3) 创建和训练模型

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

def create_model():
  return tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(512, activation='relu'),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10, activation='softmax')
  ])
import datetime
model = create_model()
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)

model.fit(x=x_train, 
          y=y_train, 
          epochs=10, 
          validation_data=(x_test, y_test), 
          callbacks=[tensorboard_callback])
  • 产生日志文件后,就可以在打开的 Tensorboard 界面点击刷新,看到实时训练趋势了
    Kaggle上使用Tensorboard

到底了 😃文章来源地址https://www.toymoban.com/news/detail-420688.html

到了这里,关于Kaggle上使用Tensorboard的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【pytorch】tensorboard + transforms的使用

    一、tensorboard的使用 1. 加载一张图片转化为tensor类型,并通过tenboard可视化  二、transforms的常用函数 细心的小伙伴已发现了,上面已经使用了transforms了,我们在添加图片时,用到了ToTensor()这个函数。 ToTensor()函数: 将一个PIL类型转换成tensor类型; Normalize() 函数: 用于归一

    2024年02月10日
    浏览(29)
  • 使用Tensorboard多超参数随机搜索训练

    完整代码位置https://gitee.com/chuge325/base_machinelearning.git 这里还参考了tensorflow的官方文档 但是由于是pytorch训练的差别还是比较大的,经过多次尝试完成了训练 硬件是两张v100 这个代码可以查看每次训练的loss曲线和超参数的对比信息 如果您的 TensorBoard 日志存储在远程服务器上,

    2023年04月19日
    浏览(22)
  • TensorBoard——Pytorch版使用(附带案例演示)

    TensorBoard是一个用于可视化机器学习实验结果的工具,可以帮助我们更好地理解和调试训练过程中的模型。 在PyTorch中,我们可以使用TensorBoardX库来与TensorBoard进行交互。TensorBoardX是一个PyTorch的扩展,它允许我们将PyTorch的训练中的关键指标和摘要写入TensorBoard的事件文件中。

    2024年03月11日
    浏览(39)
  • TensorBoard最全使用教程:看这篇就够了

    机器学习通常涉及在训练期间可视化和度量模型的性能。 有许多工具可用于此任务。 在本文中,我们将重点介绍 TensorFlow 的开源工具套件,称为 TensorBoard,虽然他是TensorFlow 的一部分,但是可以独立安装,并且服务于Pytorch等其他的框架。 TensorBoard 是一组用于数据可视化的工

    2024年01月17日
    浏览(47)
  • Pytorch使用TensorBoard(使用AutoDL快速入门)(mac系统)

    AutoDL配有miniconda,提供 tensorboard 监控 没有账号的可以注册体验,新用户注册有十元免费代金券 https://www.autodl.com/register?code=c7d8238d-2b58-4765-a38a-1b9c3f39926e 终端进入项目环境,输入命令安装 终端输入: 正常输出则安装成功 导入包 创建一个SummaryWriter对象:用于创建一个log文件

    2024年02月06日
    浏览(217)
  • AutoDL实时查看tensorboard曲线情况(结合官方文档使用)

    AutoDL帮助文档-TensorBoard 1、首先结束默认启动的TensorBoard进程,执行命令: 2、在终端中执行以下命令启动TensorBoard (我这里的 /root/autodl-nas/yoloair/runs/train/exp8 是我自己切换成了一个log绝对路径,没有向官网说明里面那样将events文件拷贝到 /root/tf-logs/ 目录下) 这里我想多说一

    2024年02月12日
    浏览(29)
  • Pytorch中如何加载数据、Tensorboard、Transforms的使用

    一、Pytorch中如何加载数据 在Pytorch中涉及到如何读取数据,主要是两个类一个类是Dataset、Dataloader Dataset 提供一种方式获取数据,及其对应的label。主要包含以下两个功能: 如何获取每一个数据以及label 告诉我们总共有多少的数据 Dataloader,可以对数据进行打包,为后面的网络

    2024年02月10日
    浏览(26)
  • YOLOv5 使用tensorboard查看可视化训练结果

    1.1.找的models/yolo.py文件中,将最下面有关 Tensorboard 的注释打开 2.进入项目根目录 比如你训练的是第20个版本,那么 tensorboard --logdir=./runs/train/exp20 就可以查看当前训练的可视化结果了 3.通过浏览器查看可视化训练结果

    2024年02月16日
    浏览(51)
  • kaggle平台的使用

           Kaggle是由联合创始人、首席执行官安东尼·高德布卢姆(Anthony Goldbloom)2010年在墨尔本创立的,主要为开发商和数据科学家提供举办机器学习竞赛、托管数据库、编写和分享代码的平台。该平台已经吸引了80万名数据科学家的关注,这些用户资源或许正是吸引谷歌的主

    2024年02月06日
    浏览(23)
  • pytorch中使用TensorBoard进行可视化Loss及特征图

    安装TensorBoard 导入TensorBoard 实例化TensorBoard 训练过程中的loss,accuracy等都是标量,都可以用TensorBoard中的add_scalar来显示,add_scalar方法中第一个参数表示表的名字,第二个参数表示的是你要存的值,第三个参数可以理解为x轴坐标。 终端输入tensorboard --logdir=logs,开启TensorBoard

    2023年04月12日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包