边缘计算那些事儿—边缘智能技术

这篇具有很好参考价值的文章主要介绍了边缘计算那些事儿—边缘智能技术。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0 背景

        边缘智能是边缘计算中一个非常重要的方向。它将边缘计算和人工智能算法结合起来,在边缘设备上就近处理目标检测、物体跟踪,识别等任务。这种处理方式可以降低时延,减少数据上送云端对回传网络的冲击,同时保证数据的隐私和安全性。但是,我们要面对一个问题,即现有的人工智能算法是否可以直接应用于边缘侧,还是我们需要重新设计一套原生算法。本文将探讨边缘智能网关的全栈解决方案,提供一套工程化的实现框架,从硬件、操作系统、数据平台和智能编程库选型入手,帮助读者选型快速搭建一个边缘智能网关出来。

1 什么是边缘智能

        边缘智能是指将边缘计算和人工智能相结合,在靠近用户的边缘设备上对数据进行智能采集,检测和识别。如下图所示,智能模型可以在云端进行训练,然后在边缘设备上进行预测。这样的协同模式,是因为边缘设备通常在计算能力和存储能力上比较弱,无法完成大规模的训练,考虑到边缘设备就近处理的优势,可以将预测模型下沉到这一级边缘设备。如何评价边缘智能设备的预测能力,结合边缘设备资源不足的特点,主要从边缘智能设备的预测准确率,低延迟,低功耗和内存占用率低四个视角评价。

边缘计算那些事儿—边缘智能技术

        整个边缘智能设备为了达成上述的四个评价标准,在技术层面主要追求轻量化的实现方式,比如轻量化的机器学习算法,轻量化的边缘智能开发库,轻量化的操作系统等。在硬件选型上采用异构化的硬件,与通常的边缘网关设备不同,需要选择计算密集型的芯片作为计算设施。被采集的数据并不能被立刻处理而要首先进行数据清洗。当下一种比较流行的边缘智能模型是边传边算,从空口开始到每一级的边缘设备都进行计算,在其中某一级的边缘智能设备上就完成了检测,识别等功能。关于边缘智能的实现技术框架,详见下节。

2 边缘智能的实现技术架构

        如果我们想落地一款边缘智能网关,在每一层上可以选择哪些技术呢?本小节将给出一个参考案例。如下图所示,图中右边从底层硬件到最上层的应用给出了可选的技术方案,左边则给出选择这一项技术的原因。

        首先是硬件芯片的选择,因为我们要实现的边缘智能网关需要具备一定的运行机器学习、深度学习的能力,传统的边缘计算网关采用的CPU和arm体系结构并不适合处理这种计算密集型的业务,因此需要选择诸如GPU、NPU、ASIC、FPGA等计算型芯片加速。考虑到上一节提到的边缘智能的低功耗的特性,当前比较占优势的技术是FPGA,FPGA因其灵活的硬件设计,可以很方便地开发不同应用场景的硬件,当然ASIC可以提供更低的功耗,但是因灵活性不及FPGA,所以在此处图中选择FPGA作为硬件加速引擎。

边缘计算那些事儿—边缘智能技术

        接下来是操作系统的选型。linux是边缘计算网关中被广泛使用的一种开源操作系统,但是linux本身是一种IO密集型或者说是指令密集型的操作系统,在数据的处理调度上并无优势,因此此处笔者借鉴《边缘计算》一书中提到的ROS作为专门处理计算任务和调度的操作系统,实现AMP双系统。对于模型预测,智能编程库相关的算法运行在ROS上,对于一般的数据管理和设备管理则运行在linux上,如果是双核的开发板,则可以分别绑定到不同的核上运行。

        再往上看就来到数据平台层,这一层是边缘计算网关的核心,主要是处理和管理数据、设备状态,实现云边协同等。显然在边缘智能网关,仍然需要对设备进行处理,而且会涉及到大量预测数据的处理,部分数据还需要上送到云端进行训练,因此这一层也是必不可少的。此处我们选择kubeedge或者edgex foundary作为数据处理平台,这两个平台分别在工业边缘网关,物联网网关,智慧城市,智慧交通等有着广泛应用,可以简化设备维护,部署,云边数据传输的复杂度,让我们更聚焦于使用边缘智能编程库进行业务开发或者设计新的边缘智能算法。

        再往上就是我们本节的核心轻量的边缘智能编程库,这个库可以方便实现快速的智能业务开发,不必从头开始实现原生边缘智能算法或者裁剪现有云端算法。此处我们推荐TensorFlow Lite和Paddle Lite两个编程库,这两个库同样是当前应用比较广泛的开源项目,关于这两个库的差别将在下一节重点介绍。

        最后就是从算法角度,实现边缘智能算法的一些方案,简单来说分为两类,一类是原生算法,就是基于边缘网关的资源受限的特点重新设计轻量化的训练和预测模型;还有一类是从当前云端的算法通过压缩、裁剪等手段得到预测模型,然后卸载到边缘网关上,比如深度学习模型的网络压缩,知识迁移,低秩逼近等。如果要自己设计算法,需要注意从低时延,低内存,低延迟,高准确率四个角度考虑,保证算法可用性。

3 TensorFlow Lite和Paddle Lite对比

        TensorFlow Lite和Paddle Lite分别是由Google和百度开发的轻量级的智能算法编程库,均适合部署在诸如嵌入式系统,边缘计算网关等资源受限的设备上,擅长进行预测,其负责训练模型分别是TensorFlow和PaddlePaddle,可以部署在云端。如下表所示从10个角度进行对比,读者可以根据自己的业务需求选择其中的一个模型。

边缘计算那些事儿—边缘智能技术        从上表中可以看出,两个模型有不同的应用场景,TensorFlow Lite更适合应用在英语自然语言的场景,而Paddle Lite更适合中文语音图像。在实现上,都是选择对现有云端的算法进行优化裁剪,不过采用的方案不同,一个是量化策略核内存复用,另一个则是知识蒸馏技术。都支持多种硬件,支持深度学习推理框架。在商用案例和场景上,两者又很多的重合,比如都支持时下比较火的自动驾驶领域,TensorFlow Lite支持的场景更加丰富核多样,而paddle lite主要聚焦在图像和视频的检测、追踪和识别上。

4 小结

        本文从工程选型的角度简单地介绍了边缘智能网关的实现原理和相关实现过程。当然这并不是唯一的解决方案,目的是抛砖引玉,帮助读者从项目视角感受一个边缘智能网关的实现框架。在其中还有一些细节,比如如何将Paddle Lite作为Kubeedge的pod节点安装上去,希望读者在实践中一起交流探讨。文章来源地址https://www.toymoban.com/news/detail-420795.html

到了这里,关于边缘计算那些事儿—边缘智能技术的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 边缘计算背景介绍

    总所周知,章鱼是地球上最聪明的生物之一,它们在捕猎的时候异常灵巧迅速,它们的触角又长又多,捕猎的时候是怎么做到配合极为默契,从不会缠绕打结的呢?这得益于它们类似分布式计算的\\\"多个小脑+一个大脑\\\"的构造。作为无脊椎动物,章鱼拥有巨量的神经元,但60%的

    2024年02月02日
    浏览(39)
  • 你要了解的 OpenAI 那些事:创立简史,技术背景等

    原文: https://openaigptguide.com/what-is-openai/ OpenAI 是一家人工智能研究公司,成立于2015年,总部位于美国旧金山。目前,OpenAI由创始人Sam Altman、首席技术官Ilya Sutskever、首席执行官Ilya Sutskever(同时担任首席研究科学家)等人领导。微软是OpenAI的主要投资者和合作伙伴,此外,如

    2024年02月05日
    浏览(43)
  • [apue] 进程环境那些事儿

    众所周知,main 函数为 unix like 系统上可执行文件的\\\"入口\\\",然而这个入口并不是指链接器设置的程序起始地址,后者通常是一个启动例程,它从内核取得命令行参数和环境变量值后,为调用 main 函数做好安排。main 函数原型为: 这是 ISO C 和 POSIX.1 指义的,当然还存在下面几种

    2024年02月11日
    浏览(46)
  • 关于BGP安全那些事儿

    文| 宙斯盾DDoS防护团队 Rocky 导语 美国时间10月4日中午,Facebook公司网络出现重大故障,故障持续了6个小时后才恢复。官方给出的故障原因,简单来说是一次误操作引发了连锁反应。 (复杂点就是:在例行网络维护中,发送的一条命令无意中关闭了其全球骨干网的所有BGP连

    2023年04月08日
    浏览(49)
  • 账号安全那些事儿

    随着《网络安全法》正式成为法律法规,等级保护系列政策更新,“安全” 对于大部分企业来说已成为“强制项”。然而,网络空间安全形势日趋复杂和严峻。账号安全,也在不断的威胁着企业核心数据安全。 根据最新的 IBM 全球威胁调查报告《X-Force威胁情报指数2020》,受

    2024年01月21日
    浏览(52)
  • 面试的那些事儿

    假如你是网申,你的简历必然会经过HR的筛选,一张简历HR可能也就花费10秒钟看一下,然后HR 就会决定你这一关是Fail还是Pass。 假如你是内推,如果你的简历没有什么优势的话,就算是内推你的人再用心,也无能为力。 另外,就算你通过了筛选,后面的面试中,面试官也会根

    2024年01月18日
    浏览(48)
  • [apue] 进程控制那些事儿

    在介绍进程的创建、启动与终止之前,首先了解一下进程的唯一标识——进程 ID,它是一个非负整数,在系统范围内唯一,不过这种唯一是相对的,当一个进程消亡后,它的 ID 可能被重用。不过大多数 Unix 系统实现延迟重用算法,防止将新进程误认为是使用同一 ID 的某个已

    2024年04月08日
    浏览(49)
  • Redis那些事儿(三)

            接着上一篇Redis那些事儿(二) ,这一篇主要介绍Redis基于Geo数据结构实现的地理服务,它提供了一种方便的方式来存储和处理与地理位置相关的数据。Geo数据结构是Redis的一种特殊数据类型,用于存储地理位置信息,每个地理位置被表示为经度和纬度的坐标,可

    2024年02月05日
    浏览(60)
  • Redis那些事儿(一)

            说到redis大家都不陌生,其中包括:共有16个数据库,默认为第0个数据库;数据以key-value键值的形式存储;数据类型包括String、List、Hash、Set等,其中最常用的是字符串;是单线程的、基于内存的,主要受内存和网络带宽的影响… 这些都是基于Redis的基础理论知识

    2024年02月05日
    浏览(55)
  • 【C++11那些事儿(一)】

    在2003年C++标准委员会曾经提交了一份技术勘误表(简称TC1),使得C++03这个名字已经取代了C++98称为C++11之前的最新C++标准名称。不过由于TC1主要是对C++98标准中的漏洞进行修复,语言的核心部分则没有改动,因此人们习惯性的把两个标准合并称为C++98/03标准。从C++0x到C++11,C++标

    2023年04月14日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包