m基于PID控制算法的四旋翼无人机飞行控制simulink仿真

这篇具有很好参考价值的文章主要介绍了m基于PID控制算法的四旋翼无人机飞行控制simulink仿真。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1.算法描述

2.仿真效果预览

3.MATLAB核心程序

4.完整MATLAB


1.算法描述

  无人机采用常见的四旋翼无人飞行器,如图1所示。

m基于PID控制算法的四旋翼无人机飞行控制simulink仿真

m基于PID控制算法的四旋翼无人机飞行控制simulink仿真

      PID控制器,即控制器的控制方式为P比例调整,I积分调整以及D微分调整三个部分构成,PID控制器是目前为止应用最为广泛的控制方式。PID控制器具有结构简单,性能稳定,参数设置简单等优势。PID控制器适用于各种控制对象无法进行测量获得系统参数的情况,其根据控制对象的输出和参考控制变量的输入差进行实时的调整实现对未知参数控制对象的有效控制。PID控制器由比例调整模块,积分调整模块以及微分调整模块三个部分构成,那么其输入的误差信号e(t)与输出u(t)的关系为公式6

m基于PID控制算法的四旋翼无人机飞行控制simulink仿真

m基于PID控制算法的四旋翼无人机飞行控制simulink仿真 

       公式4.15中,参数kp表示的是比例调整模块的系数,其作用是将系统的反馈误差e(t)根据参数 kp进行调节,使得调整后的控制对象的反馈误差减小。当比例系数kp​​​​​​​取较大值的时候,那么控制器的调整速度较快,但是其抖动也较大,从而导致系统了不稳定性。当比例系数kp取较小值的时候,那么控制器调整速度较慢,但调整过程较为稳定。

       参数ki​​​​​​​表示的是积分调整模块的系数,其作用将消除系统中存在的稳态误差,当存在稳态误差的时候,通过积分调节模块进行调节,直到完全消除稳态误差为止,之后积分调节功能停止工作,积分调节模块输出一个固定值。当积分调制系数ki​​​​​​​较小的时候,积分调节作用越强,反之,积分调节作用较弱,系统调整速度较慢。

      参数kd表示的是微分调整模块的系数,其主要是对系统反馈误差的变化率进行调整,其具有超前调整功能,可以预测系统反馈误差的变化率,因此可以在反馈误差产生之间将误差消除,因此通过设置微分调整参数,可以降低PID控制器的超调量,并加快系统的调整速度。

2.仿真效果预览

matlab2022a仿真结果如下:

    对无人机姿态控制系统进行建模,整个系统主要包括三个核心模块,无人机空间位置控制模块,无人机姿态控制模块以及无人机动力学模块。仿真的无人机仿真参数如下所示:

参数

单位

质量m

Kg

0.468

半轴距l

m

0.225

阻力系数 kd

N*m/rpm^2

1.5*10^-9

升力系数 kt

N/rpm

6.11*10^-8

X轴转动惯量 Ix

Kg*m^2

0.004856

Y轴转动惯量 Iy

Kg*m^2

0.004856

Z轴转动惯量 Iz

Kg*m^2

0.008801

m基于PID控制算法的四旋翼无人机飞行控制simulink仿真

 m基于PID控制算法的四旋翼无人机飞行控制simulink仿真

 m基于PID控制算法的四旋翼无人机飞行控制simulink仿真

 m基于PID控制算法的四旋翼无人机飞行控制simulink仿真

 m基于PID控制算法的四旋翼无人机飞行控制simulink仿真

3.MATLAB核心程序

m基于PID控制算法的四旋翼无人机飞行控制simulink仿真

        无人机模型主要包括目标输入模块,位置控制模块,姿态控制模块,姿态转化为控制量模块以及动力学模块五个部分。其中,无人机的核心模块是采用6DOF (Euler Angles)建模,6DOF(Euler Angles) 模块充分考虑了物体固定坐标系(Xb、Yb、Zb)相对于地球参考系(Xe、Ye、Ze)的旋转因素。无人机固定坐标系的原点是无人机的重心,无人机被假定为刚性,这一假设消除了考虑单个质量元件之间作用力的必要性。平面地球参考系被认为是惯性系,并且忽略由于地球相对于太阳的公转运动而产生的力。该模型,主要通过输入初始的Roll,Pitch,Yaw,初始的p,q,r,以及XYZ轴的转动惯量 Ix,Iy,Iz。其中,Roll,Pitch,Yaw,p,q和r的初始值均设置为零,转动惯量Ix,Iy,Iz设置根据表1的参数设置。

....................................................................
m       = 0.468;
g       = 9.8;
Ixx     = 0.004856;
Iyy     = 0.004856;
Izz     = 0.008801;
L       = 0.225;
kd      = 1.5*10^-9;
kt      = 6.11*10^-8;
 
%姿态角和位置的六个PID控制器未训练的参数
%PID x
kpx     = 0.8;
kix     = 1e-4;
kdx     = 1.3;
%PID y
kpy     = 0.8;
kiy     = 3e-4;
kdy     = 1.3;
%PID z
kpz     = 1.2;
kiz     = 1e-6;
kdz     = 2;
%PID phi
kpphi   = 2000;
kiphi   = 0;
kdphi   = 4000;
%PID theta
kptheta = 2000;
kitheta = 0;
kdtheta = 4000;
%PID psi
kppsi   = 800;
kipsi   = 0;
kdpsi   = 400;
05_065_m

4.完整MATLAB

V文章来源地址https://www.toymoban.com/news/detail-420956.html

到了这里,关于m基于PID控制算法的四旋翼无人机飞行控制simulink仿真的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于STM32的四旋翼无人机项目(一):基础知识篇

    前言: 本篇博客为飞控专栏的第一篇系统性概述文章,将对飞控系统进行详细讲解介绍。考虑到飞控项目具有一定工程复杂度,所以作者将整个项目进行分章节教学与讲解,希望可以给读者朋友带来更好地学习体验。项目将以  C-Quad 四轴无人机为工程样机,飞行器主控为

    2024年02月08日
    浏览(80)
  • 基于STM32的四旋翼无人机项目(二):MPU6050姿态解算(含上位机3D姿态显示教学)

    前言: 本文为手把手教学飞控核心知识点之一的 姿态解算 —— MPU6050 姿态解算 (飞控专栏第2篇)。项目中飞行器使用 MPU6050 传感器对飞行器的姿态进行解算( 四元数方法 ),搭配设计的 卡尔曼滤波器 与一阶低通滤波器进行数据滤波。当然,本篇博客也将为读者朋友教学

    2024年02月10日
    浏览(36)
  • 多旋翼无人机的PID调试思路

    在多旋翼无人机的控制系统中,PID控制器是一种广泛使用的调节器,用于调节无人机的各种动态特性。以下是进行多旋翼无人机的PID调试的基本思路: 一、确定系统参数 首先,你需要明确无人机的系统参数,如电机常数、旋翼半径、重力加速度等。这些参数是进行PID调节的

    2024年02月22日
    浏览(34)
  • 基于RRT算法的旋翼无人机安全和最小能量轨迹规划

    基于RRT算法的旋翼无人机安全和最小能量轨迹规划 概述: 无人机的轨迹规划是无人机自主飞行的关键问题之一。在飞行过程中,无人机需要在保证安全的前提下,以最小的能量消耗完成任务。本文将介绍如何使用RRT(Rapidly-exploring Random Tree)算法来实现旋翼无人机的安全轨迹

    2024年02月05日
    浏览(42)
  • 无人机基础知识:多旋翼无人机各模式控制框图

    无人机(Unmanned Aerial Vehicle),指的是一种由动力驱动的、无线遥控或自主飞行、机上无人驾驶并可重复使用的飞行器,飞机通过机载的计算机系统自动对飞行的平衡进行有效的控制,并通过预先设定或飞机自动生成的复杂航线进行飞行,并在飞行过程中自动执行相关任务和

    2023年04月09日
    浏览(47)
  • 超维空间S2无人机使用说明书——55、代码详解:基础PID算法控制无人机的跟随代码详解

    PID,即比例 Proportion、积分 Integral 和微分 Derivative 三个单词的缩写;比例积分微分控制,简称PID控制。 简单讲,根据给定值和实际输出值构成控制偏差,将偏差按比例、积分和微分通过线性组合构成控制量,对被控对象进行控制。 常规 PID 控制器作为一种线性控制器。 步骤

    2024年01月21日
    浏览(50)
  • 提高多旋翼无人机的悬停控制精度

    要提高多旋翼无人机的悬停控制精度,可以从以下几个方面进行优化: 优化传感器配置:选用高精度的传感器,如激光雷达、红外传感器等,可以提供更准确的姿态和位置信息。同时,对传感器进行定期标定和校准,确保其准确性。 改进控制算法:采用更为先进的控制算法

    2024年02月21日
    浏览(31)
  • 无人机飞行控制系统功能,多旋翼飞行控制系统概述

    飞行控制系统存在的意义 行控制系统通过高效的控制算法内核,能够精准地感应并计算出飞行器的飞行姿态等数据,再通过主控制单元实现精准定位悬停和自主平稳飞行。 在没有飞行控制系统的情况下,有很多的专业飞手经过长期艰苦的练习,也能控制飞行器非常平稳地飞

    2024年02月21日
    浏览(44)
  • 无人机|四旋翼运动动力学建模及位置控制仿真

    本文将实现对无人机动力学以及运动学的公式推导完成建模,该模型以电机转速为输入,以无人机的状态量为输出。并在此基础上实现位置控制,以期望位置作为输入,使用串级pid结合无人机模型生成控制指令并对无人机进行控制。 对于任意刚体运动,均可分解为转动和平动

    2024年04月11日
    浏览(40)
  • 四旋翼无人机反步法控制器设计(含simulink仿真)

    反步法设计: 1.建立四旋翼无人机非线性模型: 2.位置环虚拟控制律及反步控制器设计: 3. 姿态解算  4.姿态环虚拟控制律及反步控制器设计:  5.搭建simulink,仿真结果如下:        

    2024年02月16日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包